An Elementary End of the Periodic Table

Authors

  • Yang-Hui He London Institute, Royal Institution; City, University of London; & University of Oxford
  • Stavros Garoufalidis Southern University of Science and Technology & Max-Planck-Institute for Mathematics

DOI:

https://doi.org/10.56725/instemm.v1iS1.6

Abstract

Using the Planck scale as an absolute bound of half-life, we give a quick estimate, in the manner of Feynman's fine-structure method, of the highest possible atomic number. We find, upon simple extrapolation, that element 168 would constitute the end of the Periodic Table and its isotope with atomic weight 411, being the most stable. These are remarkably close to current best estimates obtained from sophisticated and much more involved Hartree-Fock calculations.

References

P. Pyykkö, “A suggested periodic table up to Z ≤ 172, based on Dirac-–Fock calculations on atoms and ions,” Physical Chemistry Chemical Physics, vol. 13, no. 1, pp. 161–168, 2010.

J. Emsley, “Nature’s building blocks : Everything you need to know about the elements,” Oxford University Press, p. 699, 2011.

M. Schädel, “Chemistry of superheavy elements,” Radiochimica Acta, vol. 100, no. 8-9, pp. 579–604, 2012.

Y. Oganessian, “Heaviest nuclei from 48Ca-induced reactions,” Journal of Physics G: Nuclear and Particle Physics, vol. 34, no. 4, p. R165, 2007.

T. Kibédi, M. B. Trzhaskovskaya, M. Gupta, and A. E. Stuchbery, “Conversion coefficients for superheavy elements,” Atomic Data and Nuclear Data Tables, vol. 98, no. 2, pp. 313–355, 2012.

M. Gupta and T. W. Burrows, “Nuclear Data Sheets for A = 266—294,” Nuclear Data Sheets, vol. 106, no. 2, pp. 251–366, 2005.

L. Meitner and O. R. Frisch, “Disintegration of uranium by neutrons: a new type of nuclear reaction,” Nature 1939 143:3615, vol. 143, no. 3615, pp. 239–240, 1939.

V. M. Strutinsky, “Shell effects in nuclear masses and deformation energies,” Nuclear Physics A, vol. 95, no. 2, pp. 420–442, 1967.

B. Fricke, W. Greiner, and J. T. Waber, “The continuation of the periodic table up to Z = 172. The chemistry of superheavy elements,” Theoretica chimica acta 1971 21:3, vol. 21, no. 3, pp. 235–260, 1971.

W. D. Myers and W. J. Swiatecki, “Nuclear masses and deformations,” Nuclear Physics, vol. 81, no. 1, pp. 1–60, 1966.

R. D. Herzberg, P. T. Greenlees, P. A. Butler, G. D. Jones, M. Venhart, I. G. Darby, S. Eeckhaudt, K. Eskola, T. Grahn, C. Gray-Jones, F. P. Hessberger, P. Jones, R. Julin, S. Juutinen, S. Ketelhut, W. Korten, M. Leino, A. P. Lepp¨anen, S. Moon, M. Nyman, R. D. Page, J. Pakarinen, A. Pritchard, P. Rahkila, J. Sar´en, C. Scholey, A. Steer, Y. Sun, C. Theisen, and J. Uusitalo, “Nuclear isomers in superheavy elements as stepping stones towards the island of stability,” Nature, vol. 442, no. 7105, pp. 896–899, 2006.

“Awards Ceremony of the Russian Academy of Sciences,” 2017.

A. Khazan, “Upper limit in the periodic table of elements,” Progress in Physics, vol. 1, no. 1, pp. 38–41, 2007.

V. Pershina, “The Chemistry of the Superheavy Elements and Relativistic Effects,” in Relativistic Electronic Structure Theory : Part 2 - Applications. (P. Schwerdtfeger, ed.), p. 805, Elsevier, 1st ed., 2004.

G. Münzenberg and M. Gupta, “Production and identification of transactinide elements,” in Handbook of Nuclear Chemistry (A. Vértes, S. Nagy, Z. Klencsár, R. G. Lovas, and F. Rösch, eds.), Boston: Springer US, 2nd ed., 2011.

Y.-H. He, “Deep-learning the landscape.” Available at arXiv:1706.02714, 2017.

Y. H. He, “Machine-learning the string landscape,” Physics Letters B, vol. 774, pp. 564–568, 2017.

A. Constantin, Y.-H. He, and A. Lukas, “Counting string theory standard models,” Physics Letters B, vol. 792, pp. 258–262, 2019.

R. Altman, J. Carifio, J. Halverson, and B. D. Nelson, “Estimating Calabi-Yau hypersurface and triangulation counts with equation learners,” Journal of High Energy Physics, vol. 2019, no. 3, 2019.

R. C. Barber, N. N. Greenwood, A. Z. Hrynkiewicz, Y. P. Jeannin, M. Lefort, M. Sakai, I. Ulehla, A. H. Wapstra, and D. H. Wilkinson, “Discovery of the transfermium elements,” Progress in Particle and Nuclear Physics, vol. 29, no. C, pp. 453–530, 1992.

Downloads

Published

2022-07-15 — Updated on 2022-07-15

How to Cite

(1)
He, Y.-H.; Garoufalidis, S. . An Elementary End of the Periodic Table. inSTEMM 2022, 1, 47-49.