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Abstract
We investigate certain arithmetic properties of field theories. In particular, we study the vacuum structure of
supersymmetric gauge theories as algebraic varieties over number fields of finite characteristic. Parallel to the
Plethystic Programme of counting the spectrum of operators from the syzygies of the complex geometry, we
construct, based on the zeros of the vacuum moduli space over finite fields, the local and global Hasse–Weil
zeta functions, as well as develop the associated Dirichlet expansions. We find curious dualities wherein the
geometrical properties and asymptotic behaviour of one gauge theory is governed by the number theoretic
nature of another.
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Prologue

On the number theoretical properties of the geometric struc-
tures arising from physics there has been growing interest.
Though perhaps relatively nascent a field in comparison to

the tremendous cross-fertilisation which algebraic and differ-
ential geometry have enjoyed with gauge and string theories,
ever augmenting importance and ever increasing profundity
of these number theoretic connections compel us. Recent
developments in investigating Calabi–Yau varieties over fi-
nite fields [1, 2], modularity of zeta functions of Calabi–Yau
manifolds [3], emergence of modular forms and Moonshine
behaviour in mirror maps, Gromov–Witten invariants and ma-
trix models [4–7], and especially geometric perspectives on
Langlands duality via S-duality [8] exemplify the incipience
of arithmetic within a physical context, in particular with
regard to the visions of the Langlands programme.

Our concern shall be supersymmetric gauge theory. The
physics, the geometry, as well as the interplay thereof have
established themselves as a canonical subject, of rich struc-
ture and fundamental importance. The algebraic geometry of
the theory has been crucial to such deep insight as the Holo-
graphic Principle. Indeed, in the AdS/CFT correspondence,
wherein the gauge theory arises from the world-volume dy-
namics of branes, the space of vacua parameterises precisely
the bulk geometry, typically Calabi–Yau. This vacuum mod-
uli space (VMS) of gauge theories has itself been studied [9],
and with the advances in computational commutative alge-
bra, been subject to new scrutiny [10–12], uncovering per-
haps unexpected signatures in such standard examples as the
MSSM [13] or sQCD [14].

A programme of enumerating operators in a supersymmet-
ric gauge theory has recently been constructed, the methodol-
ogy, dubbed the “Plethystic Programme”, harnesses the alge-
braic geometry of the classical VMS, determined from certain
flatness conditions once the Lagrangian is known [15, 16].
Interpreting the vacuum as prescribed by an ideal in a, pos-
sibly complicated, polynomial ring, the Hilbert series and
its plethystic exponentiation can then be regarded as grand
canonical partition function which then encodes the chiral ring
of operators of the gauge theory as a statistical-mechanical
system.

We are therefore naturally endowed with two implements
of which we feel obliged to take advantage: (1) a wealth of
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experimental data in the form of catalogues of supersymmet-
ric gauge theories, each of which engendering an algebraic
variety, realised as the VMS, and (2) an algorithmic frame-
work within which the geometry of the VMS is exploited for
the sake of enumeration of the spectrum of BPS operators and
in which a fruitful dialogue between combinatorics and gauge
theory is engaged. This concurrent inspiration, experimen-
tal and theoretical, in further accordance with the aforemen-
tioned skein of number theory already weaving herself into
the tapestry of algebraic geometry arising from physics, shall
suffice to serve as a beacon to our path.

And the path on which we are led will be as follows. We
commence with a brief review in §1, setting notation and
laying the foundation, of the two chief protagonists. First, we
outline how to obtain the moduli space of vacua, given the
(N = 1 superspace) Lagrangian of an arbitrary supersym-
metric gauge theory, by algorithmically recasting the F- and
D-flatness conditions as a quotient of the space of (mesonic)
gauge invariant operators (GIO) by the Jacobian ideal of the
superpotential. The VMS is then explicitly realised as an
affine cone over a (weighted) projective variety. The geome-
try, and in particular the Hilbert series of the VMS and combi-
natorial functionals thereof, is then utilised in the enumeration
of the GIOs via the syzygies. Second, of the vast subject of
algebraic varieties over finite number fields we touch upon
some rudiments which will be of use. We emphasise on the
construction of the local zeta function and the beautiful re-
striction of its rational form by the Weil Conjectures. Then,
forming the Euler product over primes, we remind the reader
of the arrival at the global Hasse–Weil zeta function and its
Dirichlet L-series expansion.

Thus armed, we march through a multitude of gauge the-
ories in §2, many of which are well-known, such as the free
theory and SQCD. We will investigate these gauge theories
under our new light, by finding the VMS, which is then sub-
ject to plethystic analyses, some of which have already been
investigated through the Plethystic Programme in the litera-
ture, but more importantly, to the reduction over finite fields.
A host of zeta functions is then constructed for these field
theories, and various properties, observed.

Fortified by our gaining experience on the two enumera-
tive problems, one counting the syzygies and the other, zeros
over number fields, one could not resist but to perceive them,
both deeply rooted in gauge theory, in a unified outlook. We
attempt, in §3, to glimpse at this unifying principle, and show
how one may proceed from one to the other, whereby es-
tablishing a curious duality between sets of gauge theories,
with the geometric invariant properties of one controlling the
arithmetic properties of another. In the case where the VMS
is dimension one and Calabi–Yau, viz., the elliptic curve, this
correspondence is very much in the spirit of the Modularity
Theorem of Taniyama–Shimura–Weil–Wiles. We trudge on,
in §4, towards the asymptotic behaviour of the operators in the
gauge theory, already an integral component of the Plethystic
Programme, but now accompanied by this duality, and see
once more how the emergence of the Dirichlet series in gov-
erning the large R-charge and large N trends in the physics.
Finally, we part with concluding remarks and prospects in §5.

1. Dramatis Personæ
Let us begin with a rather pedagogical presentation of the
two subjects which will be crucial to our ensuing investiga-
tions. The contrast and parallels between them will constitute
the comparative study in which we shall engage. The first
originates from supersymmetric gauge theories and the point
d’appui is the syzygies of the vacuum moduli space as an
algebraic variety; the second is key to arithmetical properties
of algebraic varieties and whose foundations rest upon the
Hasse–Weil zeta function.

1.1 The Plethystic Programme for gauge theories
Given a gauge theory, one of the most fundamental tasks is
the construction of its gauge invariant operators. In the case of
supersymmetric gauge theories, especially those arising in the
context of string theory, exhibiting as quiver gauge theories
living on the world-volume of branes, due to the intrinsically
geometrical nature of the situation, these operators are inex-
tricably linked to the vacuum geometry of the theory. We
shall restrict our attention to N = 1 supersymmetric gauge
theories in (3+1)-dimensions on whose vacuum geometry
we now briefly expound; the analysis extends itself readily to
higher supersymmetries in other dimensions.

An N = 1 (global) supersymmetric gauge theory is given
by the action

S =
∫

d4x
[∫

d4
θ Φ

†
i eV

Φi+

+

(
1

4g2

∫
d2

θ TrWαW α +
∫

d2
θ W (Φ)+h.c.

) ]
,

(1.1)

with the θ variables parameterising N = 1 superspace over
which we integrate. The Φi are chiral superfields transform-
ing in some representation Ri of the gauge group G; V is a
vector superfield transforming in the Lie algebra g= Lie(G);
Wα = iD2e−V Dα eV , the gauge field strength, is a chiral spinor
superfield; and W (Φ) is the superpotential, which is a holo-
morphic and typically polynomial, function of the Φi. Upon
integrating over superspace, we obtain the scalar potential of
the theory:

V (φi, φ̄i) = ∑
i

∣∣∣∣∂W
∂φi

∣∣∣∣2 + g2

4
(∑

i
qi|φi|2)2 , (1.2)

where φi are the scalar components of the chiral fields Φi, and
with qi being their charges. When the gauge group is Abelian,
one could, in addition, allow a Fayet–Illiopoulos (FI) term
to the Lagrangian: δL =

∫
d4θξV ⇒ (∑

i
qi|φi|2 −ξ )2 with FI

parameter ξ .

1.1.1 The vacuum moduli space as an algebraic variety
The vacuum of the above theory is the minimum of the poten-
tial, which, being a sum of squares, occurs when each squared
quantity vanishes:

V (φi, φ̄i) = 0 ⇒

{
∂W
∂φi

= 0 F-terms
∑
i

qi|φi|2 = 0 D-terms . (1.3)

For supersymmetric theories, the (classical) vacuum, defined
by the above flatness conditions for the F- and D-terms, is
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non-trivial, and is, in fact, an affine algebraic variety generi-
cally [9,10,13,14,17–20] of greater than one complex dimen-
sion. Therefore, there is a continuous moduli of vacua and
this variety is commonly called the vacuum moduli space
(VMS), M . The solution space of the F-terms alone is also of
significant interest and is known as the master space [21, 22]
(cf. review in [23]).

Whereas (1.3) gives the explicit defining equation of M ,
the standard geometrical approach is to construe the D-terms
as gauge invariants, subject to the vanishing of the F-terms.
More specifically, M is a GIT quotient of D-terms by the F-
terms [9, 20]. Calculationally, one can establish a convenient
algorithm [10, 13, 14], using the techniques of computational
algebraic geometry, to interpret the D-term invariants as a
polynomial ring map from the ideal defined by the F-terms,
with its image the ideal defining M in a convenient Gröbner
basis. The procedure can be summarised succinctly as fol-
lows.

1. Let there be m (scalar-components of super-)fields,
φi=1,...,m, and start with polynomial ring C[φ1, . . . ,φm];

2. Identify the obvious set of mesonic GIOs and find
the generating set D, consisting of k gauge invariants
(the set of GIOs is always finitely generated); this
prescribes a ring map between two polynomial rings:
C[φ1, . . . ,φm]

D−→ C[D1, . . . ,Dk];

3. Now incorporate superpotential W , generically a poly-
nomial in the fields φi and find its Jacobian ideal of
partial derivatives (F-flatness): ⟨ fi=1,...,m = ∂W (φi)

∂φi
= 0⟩;

4. The VMS is then explicitly the image of the ring map

C[φ1, . . . ,φm]

{F = ⟨ f1, . . . , fm⟩}
D=GIO−→ C[D1, . . . ,Dk], M ≃ Im(D) .

The algebro-geometric nature of the VMS is especially
pronounced in the context of string theory. When a single
brane is placed transversely to a non-trivial background, as in
the AdS/CFT correspondence, a duality is established between
the world-volume physics and the bulk supergravity. In partic-
ular, if a D3-brane is placed transverse to a local, affine Calabi–
Yau three-fold singularity M , filling the 10-dimensions of
type IIB, the world-volume is precisely a (3+1)-dimensional
gauge theory with N = 1 supersymmetry, product gauge
group and bi-fundamental matter, encoded conveniently into a
quiver. By construction, the mesonic (i.e., operators composed
of direct contraction, involving no more than the Kronecker
delta tensor, of the chiral fields) VMS of this gauge theory,
computed from (1.3), is exactly the Calabi–Yau three-fold
M . When N parallel coincident D3-branes are present, the
VMS, due to the permutation on the branes, simply becomes
SymNM ≃ M N/ΣN , the Nth symmetrised product of M .

1.1.2 Gauge invariants and the VMS
We are interested in the complete spectrum of BPS mesonic
operators in the gauge theory. As mentioned above, the space
of these objects, quotiented by the F-flat constraints, should
give rise to the VMS M . These mesonic gauge invariant
operators fall into two categories: single- and multi-trace.

The former consists of words in the operators, with gauge-
indices contracted but only a single overall trace and the
latter, various products of the single-trace gauge invariants.
We shall denote the generating function of the single-trace
gauge invariants at N branes (or, equivalently, for SU(N) ma-
trices in the gauge theory) as fN(t;M ) and that of the multi-
trace invariants, gN(t;M ); then, the nth coefficient in the
series expansion would enumerate the corresponding gauge
invariants, where n is a natural level corresponding to, for
example, the total R-charge of the gauge theory. Using the
algebraic geometry of M to construct f and g, and hence to
address the counting problem is the purpose of the so-called
plethystic programme, developed in [15, 16] and furthered
in [14, 21, 22, 24–27]. Without much ado, let us briefly sum-
marise the key points of this programme, referring the reader
to details to loc. cit.

• The quantity f∞(t), counting the single-trace gauge in-
variants at large N is equal to g1(t); this is the point
d’appui of our construction. The level (R-charge) n im-
poses a natural grading on the polynomial ring in which
M is an ideal and hence the generating function is the
Hilbert series of M in the suitable affine coördinates
embedded by the F- and D-terms:

f∞(t;M ) = g1(t;M ) =HS(t;M ) :=
∞

∑
n=0

antn . (1.4)

Here, the coefficient an is simultaneously the number
of single-trace gauge invariants at total R-charge n and
the complex dimension of the n-graded piece of the
coördinate ring prescribed by M ;

• For arbitrary N, the relation between the single- and
multi-trace GIOs are related by

g1(t) = f∞(t);
f∞(t) = PE[ f1(t)], g∞(t) = PE[g1(t)];
gN(t) = PE[ fN(t)]

(1.5)

where PE[ ] is the plethystic exponential functional
defined as

f (t) =
∞

∑
n=0

antn ⇒ g(t) = PE[ f (t)] =

= exp

(
∞

∑
n=1

f (tn)− f (0)
n

)
=

1
∞

∏
n=1

(1− tn)an

;
(1.6)

the structure of the infinite-product incarnation of this
function should be reminiscent of the bosonic oscillator
partition function;

• The plethystic exponentiation has an analytic inverse,
called the plethystic logarithm and is given in terms of
the number-theoretical Möbius function µ(k):

f (t) = PE−1(g(t)) =
∞

∑
k=1

µ(k)
k

log(g(tk)) ,

µ(k) :=

 0 k has repeated prime factors
1 k = 1
(−1)n k is a product of n distinct primes

(1.7)
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• The defining equation, or syzygy, of M is given by
f1(t;M ), which can be readily obtained from the plethys-
tic logarithm of the Hilbert series:

f1(t)=PE−1[ f∞(t)] = defining equation of M . (1.8)

When, in particular, M is a complete intersection vari-
ety, f1(t) is a terminating polynomial.

• To obtain the counting for arbitrary N, we promote
PE[ ] to a parameter-inserted version and define the
function

g(ν ; t) :=
∞

∏
n=0

1
(1−ν tn)an

=
∞

∑
N=0

gN(t)νN , (1.9)

dependent on the fugacity parameter ν . The series ex-
pansion of g(ν ; t) in ν gives gN(t;M ), the multi-trace
generating function at given N, as its coefficients. The
single-trace generating function fN(t) is then retrieved
as PE−1[gN(t;M )].

We see, therefore, that the Hilbert series, through the
plethystic functions, links the algebraic geometry of M and
the enumeration of the GIOs, single- and multi-traced, of the
N = 1 gauge theory whose VMS is M . It is thus expedient
to quickly remind the reader some key features of HS(t;M ).
It is important that the Hilbert series is a rational function in t
and can be expressed in two ways:

H(t;M ) =

{
Q(t)

(1−t)k , Hilbert series of the first kind ;
P(t)

(1−t)dim(M ) , Hilbert series of the second kind ,

(1.10)

where k is the dimension of the ambient affine space in which
M embeds. In either guise, the numerators P(t) and Q(t) are
polynomials with integer coefficients and P(1) is the degree
of M . The powers of the denominators are such that the
leading pole captures the dimension of the embedding space
and the manifold, respectively. When expanding the Hilbert
series into a Taylor series, then, the coefficients have polyno-
mial growth and is called the Hilbert polynomial. We remark
that for non-commutative graded rings and associated spaces,
it is not necessary that the Hilbert series be rational [28]; it
would indeed be interesting to investigate such circumstances,
especially since to D-brane gauge theories one should asso-
ciate a non-commutative algebra, whose centre is the classical
VMS [11].

1.2 Algebraic varieties over finite fields
In this section, we remind the reader of some well-known
results on algebraic varieties defined over finite fields. In
particular, we shall address some basic principles of local
zeta functions and the Weil Conjectures as well as global
zeta function and their manifestation as L-functions. In due
course, we will see expressions reminiscent of our plethystic
functions discussed in the previous section.

First, by a finite field we mean a number field with a fi-
nite number of elements (cf. [29]). We are acquainted with
Fp; this is simply the cyclic group of p elements for some
prime number p (called the characteristic of the field), with

members represented by 0,1,2, . . . , p−1 and the field axioms
for addition, multiplication and division being the usual arith-
metic modolo p. Less familiar are perhaps the finite (Galois)
extensions of this field, these are Fpr , consisting of pr ele-
ments for some positive integer r. These elements can be
explicitly constructed as follows. Take the polynomial ring
Fp[T ] with coefficients in the field Fp, and consider a monic
irreducible polynomial f (T ) of degree r; then the quotient
ring, by the principal ideal ( f (T )) Fp[T ]/( f (T )), is a field of
pr elements. It is well-known that Fpr for various primes p
and positive integers r are all the finite number fields.

Our main purpose is to consider an algebraic variety X ,
defined not over the field C of complex numbers, but, rather,
over Fpr , i.e., all indeterminates are to take values in these
finite fields (cf. e.g., [2, 3, 30]). As such, our usual notion
of a variety now simply becomes a discrete set of points.
An exponentiated generating function, can be formed for the
number of points Npr of X over pr:

Zp(t) = exp

(
∞

∑
r=1

Npr

r
tr

)
; (1.11)

this is dubbed the local zeta function of the variety X for the
prime p because it is localised at a fixed prime.

We can delocalise by taking the product of the above
over all primes (we will encounter so-called primes of good
versus bad reduction later) giving us the so-called global, or
Hasse–Weil, zeta function:

Z(t) = ∏
p

Zp(t) . (1.12)

It is customary to apply the substitution t := p−s to the above,
for reasons which will soon become apparent in the ensuing
examples, to which we now turn.

A Point: The simplest variety is a single point. In this case,
Npr = 1 for all p and all r. Whence,

Zp(t;pt) = exp

(
∞

∑
n=1

tr

r

)
=

1
1− t

, (1.13)

Z(s;pt) = ∏
p

1
1− p−s = ζ (s) , (1.14)

where, in the second line, we have used the standard Euler
product for the Riemann zeta function. This illustrative exam-
ple indeed should clarify the various names and substitutions
stated above.

The Projective Space Pk: For the case of the affine line
A1 over Fpr , there are clearly pr points; the projectivisation
introduces a point at infinity, and hence Npr = pr +1, giving
us

Zp(t;P1) = exp
(

∞

∑
r=1

pr+1
r tr

)
= 1

(1−t)(1−pt) ,
(1.15)

Z(s;P1) = ∏
p

1
(1−p−s)(1−p−s+1)

= ζ (s)ζ (s−1) .
(1.16)
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The affine line itself would have simply given Zp(t;A1) =
1

1−pt and Z(s;A1) = ζ (s−1). The generalisation to Pk over
Fpr is straight-forward. Recall that

Pk ∼ (Ak+1 \{0,0, . . . ,0})/F∗
pr ,

where F∗
pr are the non-zero elements in the field, totalling pr−

1 in number. Thus, the number of points in Pk is (pr)k+1 −1
quotiented by pr−1, giving us Npr = (pr(k+1−1)/(pr−1) =
1+ pr + p2r + . . .+ pkr. Therefore,

Zp(t;Pk) = exp

 ∞

∑
r=1

k
∑

j=0
pk j

r tr


= ∏

k
j=0

1
(1−p jt) ,

(1.17)

Z(s;Pk) = ∏
p

∏
k
j=0

1
(1−p j−s)

= ∏
k
j=0 ζ (s− j) .

(1.18)

Similarly, we have that, for Ck, Nn = pkn, giving us

Zp(t;Ck) = (1− pkt)−1, Z(s;Ck) = ζ (s−k) . (1.19)

1.2.1 The Dirichlet series
The Euler product in (1.14), a key property for the Riemann
zeta function, is a general feature of the global zeta functions
of our concern. Indeed, one can develop an expansion of
such products, into what is known as an Dirichlet Series
(sometimes called L-series for reasons which shall become
clear later):

Z(s) = ∏
p

Zp(p−s) =
∞

∑
n=1

cn

ns , (1.20)

where the product over primes is naturally converted to a sum
over the integers. For the above example of a single point, the
coefficients cn are simply all unity, the famous representation
of ζ (s).

Some standard identities in the theory of Dirichlet series
(cf. [31, 32]) will be pertinent to us. The first is that, for
Re(s)> max(1,1+Re(a)),

ζ (s)ζ (s−a) = ∑
n=1

σa(n)
ns , (1.21)

where we recall that σa(n) := ∑
d|n

da is the sum over the ath

power of the divisors of n. This is a special case of the so-
called convolution property of Dirichlet series, that

A(s) = ∑
n=1

an

ns ,B(s) = ∑
n=1

bn

ns ⇒A(s)B(s) = ∑
n=1

(a∗b)n

ns ,

(1.22)

with the convolution defined as

(a∗b)n = ∑
i|n

ai b n
i
. (1.23)

In general, the coefficients of the L-series can be obtained
by transform of Mellin-type. This inversion is the so-called

Perron’s formula and states that for Z(s) =
∞

∑
n=1

c(n)
ns , conver-

gent when Re(s)> a,

A(m) =
m−1

∑
n=1

c(n)+
1
2

c(m) =
1

2πi

∫ c+i∞

c−i∞
Z(z)mz dz

z
, (1.24)

for positive integer m, c an arbitrary real number such that
Re(s) > a− c. These partial sums can then be listed to iter-
atively obtain the individual terms desired. We also have a
direct, though less computationally straight-forward inversion
formula that

c(n) = lim
T→∞

1
2T

∫ T

−T
Z(s)nsd(Im(s)) . (1.25)

Finally, one could use an even more direct method of taking
limits, wherever possible. Indeed, writing, by setting s :=
− logx so that as x tends to 0, s tends to infinity,

Z(s) =
∞

∑
n=1

cn

ns =
∞

∑
n=1

cnnlogx , (1.26)

we have that c1 = lim
x→0

Z(− logx), c2 = lim
x→0

2− logx(Z(− logx)−
c1), and so on, successively, until order by order all the coeffi-
cients are obtained.

1.2.2 Weil–Grothendieck–Deligne
The general structure of the local zeta function of the algebraic
variety X reflects, in a remarkably elegant fashion, the geo-
metrical nature of X . These are captured by what historically
have come to be known as the Weil Conjectures (1940’s)
and proved by Deligne in 1974, using the ℓ-adic cohomo-
logical techniques envisioned by Grothendieck. In summary,
the statement is that for X a (non-singular) m-dimensional
complex projective algebraic variety,

• The local zeta function Z(t;X) is a rational function
which can be more precisely written as alternating prod-
ucts in numerator and denominator:

Zp(t;X) =
P1(t) · · ·P2m−1(t)
P0(t) · · ·P2m(t)

, (1.27)

where P0(t) = 1− t, P2m(t) = 1− pmt and Pi=1,...,2m−1
are all polynomials with integer coefficients, admitting
factorisation ∏

j
(1−αi jt) with αi j being complex num-

bers with modulus |αi j|= p
i
2 . When m = 1, this means

that all zeros of Zp(t;X) are at Re(s) = 1
2 , an analogue

of the Riemann Hypothesis.

• A functional equation Zp(
1

pmt ;X) = ±p
mχ

2 tχ Zp(t;X),
where χ is the Euler number of X , is obeyed.

• For primes p of good reduction (that is, when the va-
riety remains non-singular over Fpr , a point which we
discuss in Appendix I), the degree of Pi is the ith Betti
number of X as a complex variety.
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2. Exempli Gratia
Having given a brief account of our two protagonists, it is
now expedient to present, in relation thereto, some illustrative
examples of gauge theories, their moduli spaces and associ-
ated arithmetic as well as geometric properties, as much as a
warm-up, as a provision of a small catalogue against which
one could initiate some systematic checks and experiments
(note that our approach is different from, e.g., [33, 34] to
whose penetrating insights the reader is highly encouraged to
refer).

2.1 A single field
The simplest gauge theory is undoubtedly that of SU(N) with
a single free field X charged therein, embodied as N ×N ma-
trices. There is no superpotential and the gauge invariants
are simply T RX i for i = 1, . . . ,N, with any power i > N re-
writable, in terms of Newton polynomials, in this fundamental
generating set. When N → ∞ where no such matrix relations
occur, we have that the moduli space is simply the affine
complex line C, generated by (X) and the full spectrum of
operators are I,Tr(X),Tr(X2),Tr(X3), . . . Thus, the funda-
mental generating function is the Hilbert series for C (cf. §7.1
of [15]):

g1(t;C) = f∞(t;C) =
1

1− t
= 1+ t + t2 + t3 + . . . (2.28)

The plethystic logarithm gives PE−1[ f∞(t;C)]= f1(t;C)=
t, signifying precisely the above: that the chiral ring is freely
generated by a single element. The plethystic exponential

is the Euler Eta-function
∞

∏
n=1

(1− tn)−1, whose expansion en-

codes the (free) partition of integers and corresponds to the
various ways the above single-trace operators can be mul-
tiplied. Finally, the ν-inserted plethystic exponential gives

gν(t;C) =
∞

∏
m=0

(1−νtm)−1 =
∞

∑
N=1

N

∏
n=1

1
1− tn ν

N ,

fN(t;C) = PE−1[gN(t;C)] =
1− tN+1

1− t
.

(2.29)

Therefore, at fixed N, the VMS becomes the symmetric prod-
uct CN/ΣN , and the corresponding single- and multi-trace
spectra are counted, respectively, by fN(t;C) and gN(t;C).
Strictly speaking, one should think of the VMS as being the
Hilbert scheme of N-points on C (q. v. [35]) and plethystics
for these are discussed in [16].

The arithmetic properties of the above VMSs are also
readily computed. For C, the local and global zeta functions
were given in (1.19):

Zp(t;C) =
1

1− p t
, Z(s;C) = ζ (s−1) . (2.30)

For N > 1, the spaces become more involved, even though
their Hilbert series are neatly compacted into fN(t;C). Let us
begin with N = 2. Here we have the affine variety described
by (x,y)↔ (y,x) acting on C[x,y]. The Hilbert series is given
by g2(t;C) = [(1− t)(1− t2)]−1, signifying a freely gener-
ated algebra by two elements, of degrees 1 and 2, respectively:

these we see clearly as the invariants x+ y and x2 + y2 un-
der the exchange. The VMS is therefore an affine cone over
the weighted projective space WP1

[1:2]. Thus, other than the
weighting of the cöordinates, the variety is simply C2 and
no extra syzygies exist for our particular embedding. Hence,
the zeta functions are simply Zp(t;C2) = (1− p2 t)−1 and
Z(s;C2) = ζ (s− 2). This treatment generalises to arbitrary
N, giving the VMS as the affine cone over WP1

[1:2:...:N], iso-
morphic to CN , and having zeta functions as given in (1.19).

Parenthetically, the projectivisation of the above is also
interesting. Adding a point at infinity gives P1, and the global
zeta function, from (1.15), is the product ζ (s)ζ (s−1). Con-
sequently, the L-series is

Z(s;P1) = ζ (s)ζ (s−1) =
∞

∑
n=1

σ1(n)
ns , (2.31)

where we have used (1.21). If we were to develop the power
series with the L-series coefficients cn = σ1(n), we would
have g(t) = 1+ ∑

n=1
σ1(n)tn. This can be re-written [31, 32]

as a so-called Lambert summation,
∞

∑
n=1

σa(n)tn =
∞

∑
n=1

natn

1−tn

where the number theoretic divisor function becomes implicit.

2.2 D3-brane in flat space

One of the most studied gauge theory in recent times is un-
questionably the world-volume theory of N parallel coincident
D3-branes, especially in the context of holography and Mal-
dacena’s AdS/CFT Correspondence. The simplest setup is
that of the D3-brane transverse to flat C3, considered as a
real cone over S5, with near-horizon geometry of AdS5 ×S5.
The world-volume theory is N = 4, U(N) super-Yang–Mills
theory in 4-dimensions with three adjoint fields, say x,y,z,
charged under the U(N). There is a simple cubic superpo-
tential W = Tr(x[y,z]) and the matter content can be easily
represented by the clover quiver:

x

yz

W = Tr(x[y,z]) , (2.32)

where the node corresponds to the U(N) gauge group and the
three arrows, the three (adjoint) fields.

The VMS, by construction, is parameterised by the trans-
verse motion of the branes and subsequently is C3 for a single
D3-brane and the Nth symmetrised product thereof for arbi-
trary N. The F-terms, from the Jacobian of W , demand that
x,y,z mutually commute and we have the symmetric commu-
tative algebra generated by three elements. The plethystics
were computed in [15] and, with the standard binomial symbol
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(x
2

)
we have

g1(t;C3) = f∞(t;C3)
= 1

(1−t)3

=
∞

∑
n=0

(n+2
2

)
tn ,

(2.33)

gν(t;C3) =
∞

∏
m=0

(1−νtm)−
(n+2)(n+1)

2

=
∞

∑
N=1

gN(t;C3)νN ,
(2.34)

fN(t;C3) = PE−1[gN(t;C3)] . (2.35)

Now, for N = 1, we have C3 and the zeta functions are
back to (1.19). At N = 2, expanding the ν-inserted plethystic
exponential gives us

g2(t;C3) =
1+3t2

(1− t)3(1− t2)3 ,

f2(t;C3) = 3t +6t2 −6t4 +8t6 −18t8 +O(t10) .

(2.36)

The non-terminating syzygies in f2 signifies that we have a
VMS which is non-complete intersection, whose Hilbert se-
ries is given by g2. Luckily, because of the relative simplicity
of the space, we can readily write down the invariants. Let
x,y,z be the cöordinates of C3 (this is not an abuse of nota-
tion, the three fields, after imposing the commuting F-terms,
should correspond precisely to these affine cöordinates), then
our Σ2 action takes these to, say x′,y′,z′, and we have the full 6
cöordinates of (C3)2. In degree one, the invariants are clearly
u1 = x+ x′, u2 = y+ y′ and u3 = z+ z′. In degree two, the
invariants are the obvious v1 = xx′, v2 = yy′ and v3 = zz′, as
well as v4 = xy+ x′y′, v5 = xz+ x′z′ and v6 = yz+ y′z′. Since
Σ2 is a group of order 2, by Nöther’s theorem on invariants,
we need not look for higher invariants. We can then calculate,
facilitated by the aid of [36], that there are non-trivial syzy-
gies amongst these invariants: we obtain the non-complete
intersection which is an affine complex cone over 6 quartics
in WP9

[1:1:1:2:2:2:2:2:2]. Explicitly, the equations are

(C3)2/Σ2 ≃ {(u2
2v3 −u3u2v6 +u2

3v2 + v2
6 −4v2v3) ,

(u2
1v3 −u3u1v5 +u2

3v1 + v2
5 −4v1v3) ,

(u2
1v2 −u2u1v4 +u2

2v1 + v2
4 −4v1v2) ,

(−u2
3v4 −u2u3v5 −u1u3v6 −2u1u2v3+

+u1u2u2
3 +4v3v4 +2v5v6) ,

(−u2
2v5 −u3u2v4 −u1u2v6 −2u1u3v2+

+u1u3u2
2 +4v2v5 +2v4v6) ,

(−u2
1v6 −u3u1v4 −u2u1v5 −2u2u3v1+

+u2u3u2
1 +2v4v5 +4v1v6)} .

(2.37)

Given this algebraic variety, we can proceed to compute
its zeta function. The base of the cone is a complex 5-
dimensional projective variety, therefore the local zeta func-
tion, by (1.27), should be of the form

P1(t)P3(t)P5(t)P7(t)P9(t)
(1− t)P2(t)P4(t)P6(t)P8(t)(1− p5t)

,

where Pi(t), for i = 1, . . . ,9, is a polynomial of degree bi, the
ith Betti number of the 10 real-dimensional base manifold.

Now, the cone has one more point than the base, viz. the tip at,
say, the origin, which is removed when projectivising. Thus,
this addition of unity to Npr , upon exponentiating according

to the definition (1.11), gives a trivial factor of exp(
∞

∑
r=1

tr

r ) =

(1− t)−1. Hence, the total affine variety has zeta-function

Zp(t;(C3)2/Σ2) =
P1(t)P3(t)P5(t)P7(t)P9(t)

(1− t)2P2(t)P4(t)P6(t)P8(t)(1− p5t)
.

(2.38)

The coefficients of these polynomials can be fixed by tabulat-
ing the explicit number of solutions for some low values of
pr. We find, for example, that Np1 = 26,36,56 for the first few
primes, a pattern which we speculate will persist to hold. For
now, let us not belabour the point and turn to demonstrate the
determination of such coefficients for some simpler examples.

2.3 The conifold
A relatively simple gauge theory, canonical in the string theory
literature [37], is the theory of D3-branes on a conifold C , i.e.,
the quadric in C4 or {uv= zw}⊂C[u,v,z,w]. Note that this is
a toric variety and enumeration of gauge invariants are greatly
facilitated thereby; we include the toric diagram below, drawn
in a plane due to the Calabi–Yau nature, for reference. The
world-volume theory has N = 1 supersymmetry, SU(N)×
SU(N) gauge group, with four bi-fundamental fields as well
as a quartic superpotential:

(0,1,1) (1,1,1)

(0,0,1) (1,0,1)

TORIC DIAGRAM

>>

>>

B
1,2

A
1,2

QUIVER

SU(N) SU(N)
Ai=1,2
B j=1,2
W = Tr(εilε jkAiB jAlBk)

(2.39)

The counting of the gauge invariants can be done explic-
itly [15, 16]. We have four fundamental invariants, corre-
sponding to the four Euler cycles in the quiver [38], M0,1 =
A1B1, M1,0 =A1B2, M−1,0 =A2B1, M0,−1 =A2B2, sub-
jecting to the F-term relation obtained from the quartic su-
perpotential: M0,1M0,−1 = M1,0M−1,0. Diagrammatically, we
can then see the lattice points in the toric cone corresponding
to the gauge invariants (Figure 1, cf. [39]).

Subsequently, the VMS is by construction the cone over
the said quadric hypersurface for a single D-brane and for
arbitrary N, plethystic analysis gives us:

g1(t;C ) = f∞(t;C ) = 1+t
(1−t)3

=
∞

∑
n=0

(n+1)2tn ,
(2.40)

gν(t;C ) =
∞

∏
m=0

(1−νtm)(n+1)2

=
∞

∑
N=1

gN(t;C3)νN .
(2.41)
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Level  Three

M(0,1)

M(0,−1)

M(1,0)

M(−1,0)

M(1,0) M(−1,0) = M(0,1) M(0,−1)M(0,1) M(0,1)

M(0,1) M(0,1) M(1,0)

M(1,0) M(−1,0) = M(0,1) M(0,−1)

M(0,−1) M(0,−1)

M(0,1) M(0,1)

M(−1,0)M(−1,0) M(1,0) M(1,0)

M(0,1) M(−1,0) M(0,1) M(1,0)

M(0,−1) M(0,−1)M(−1,0) M(1,0)

Level  One Level  Two

Figure 1. The lattice points in the toric cone corresponding to the gauge invariants.

We see that the (n+1)2 indeed captures the lattice cone count-
ing above.

Now, we have a rather simple projective variety, a single
hyper-surface, call it C, of degree 2 in P3, over which C is an
affine complex cone. This base surface C is clearly a Kähler
manifold and the Hodge diamond is h0,0 = 1, h0,1 = h1,0 = 0,
h0,2 = h2,0 = 0 = h1,2 = h2,1, h1,1 = 2 and h2,2 = 1. Whence,
the Betti numbers1 are b0 = b4 = 1, b1 = b3 = 0, b2 = 2.
Again, because C has one more point, at the tip of the cone,
than C, the local zeta function is as dictated by (1.27), together
with an additional factor of (1− t)−1:

Zp(t;C ) =
1

(1− t)2(1−Apt + pt2)(1− p2t)
. (2.42)

In the denominator, the only non-trivial factor would have
been P2(t), a quadratic form which we have spelt out, wherein
a single indeterminate, viz., Ap is to be fixed. It therefore
suffices to enumerate at pr=1 to determine Ap and govern all
the finite Galois extensions thereof in a single sweep.

Comparing (2.42) with the definition for Zp and factoris-
ing 1−Apt + pt2 = (1−αt)(1−β t), we find that

∞

∑
r=1

Npr

r tr = logZp(t;C )

= −2log(1− t)− log(1− p2t)−
− log(1−αt)− log(1−β t)

=
∞

∑
r=1

tr

r

[
2+ p2r +αr +β r

]
.

(2.43)

Whence, we can determine the coefficient Ap as

Npr = 2+(αr+β
r)+ p2r ⇒ Ap =α+β =Npr=1 −2− p2 .

(2.44)

We can readily find the first values of Np on the computer:

Npr=1 = {10,33,145,385,1441,2353,

5185,7201,12673,25201 . . .} ;
(2.45)

interestingly, these are all square-free integers:

{2 ·5 ,3 ·11 ,5 ·29 ,5 ·7 ·11 ,11 ·131 ,13 ·181 ,

5 ·17 ·61 , 19 ·379 ,19 ·23 ·29 ,11 ·29 ·79} .

1The reader versed in AdS/CFT is perhaps more used to the number of
2-cycles being 1, thinking of the conifold as a real cone over S2 ×S3. Here,
however, we are considering it as a complex cone over the quadric surface
and will study this compact base surface here.

From these we can determine the global zeta function, and
thence its L-series development:

Z(s;C ) = ∏p
1

(1−p−s)2
1

(1−p2−s)(1+p1−2s+p−s(Np−1−p2))

=
∞

∑
i=1

cn
ns ,

cn = {1,11,34,80,146, . . .} .

(2.46)

What is perhaps more interesting is, upon seeing no imme-
diate pattern to the above, when one desingularises the cone
by a standard deformation of complex structure. In particular,
let us consider the variety uv− zw = 1, which we shall denote
C̃ . We have chosen the complex parameter to be 1 to avoid it
being reduced back to 0 for some prime factor, constituting
an obviously bad reduction. In this case, we find that

Npr=1 = {6,24,120,336,1320,2184,4896,

6840,12144,24360, . . .} ,

or, as one could emperically convince oneself, Np = p(p2−1).
This gives us the form of the local zeta function, using (2.42),
as

Zp(t; C̃ )=
1

(1− t)2
1

(1− p2t)
1

(1+ pt2 − (p3 − p2 − p−1)t)
,

(2.47)

and subsequently the global zeta function as

Z(s; C̃ ) =
ζ (s)2ζ (s−2)∏p(1+ p1−2s +(p3 − p2 − p−1)p−s)−1 .

(2.48)

The function in the form of the infinite product can be thought
of as an L-function for this variety; we shall return to this
type of function for a more canonical example, involving the
elliptic curve, later on in §3.2.1 and Appendix I. Using the
form of (2.48), we can also perform a Dirichlet expansion to
obtain:

Z(s; C̃ ) =
∞

∑
n=1

cn
ns

cn = {1,7,25,32,121,175,337,130,449,847,
1321,800,2185,2359,3025,519, . . .}

(2.49)
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Now, for higher N, the space becomes more involved.
Take N = 2, for a brief example. We have a Σ2 action on
C8[u,v,z,w,u′,v′,z′,w′], exchanging the primed and unprimed
cöordinates, and in addition we have two copies of the defin-
ing quadric equations. The invariants are u+u′, v+ v′, z+ z′

and w+w′ at degree 1, uu′, vv′, zz′, ww′, as well as the combi-
nations uv+u′v′, uz+u′z′, uw+u′w′, vz+v′z′, vw+v′w′ and
zw+ z′w′ at degree 2, which should be subject to uv− zw =
0 and u′v′ − z′w′ = 0. This is subsequently gives a non-
complete-intersection, of complex dimension 6, defined by
four cubics and twenty quartics, embedded in WP14

[14:210]
. The

Hilbert series can be computed, either from [36], or from
(2.33), to be f (t;C 2/Σ2) = g2(t;C ) = 4t4+3t3+7t2+t+1

(t−1)6(t+1)3 .
Of parenthetical interest is perhaps the master space in

the toric, or N = 1, case. This space is the solution set to the
F-terms alone and controls, in the sense of GIT quotient, the
final VMS; it has been extensively studied for gauge theories
in [21, 22]. For the present case of the conifold, the space
is simply C4 and the zeta functions once more return to the
simple form in (1.19).

As a further digressive remark, we know that the gauge
theories for the so-called generalised conifold uv = zmwk and
orbifolded conifold {uv = ym,zw = yk} have been extensively
studied (cf. [40, 41]). Reducing these varieties over some low
primes, however, produced the same enumeration as of points
as did the above for the conifold itself. This should be due to
the Frobenius automorphism from points to its power, reduced
over characteristic p and hence produce no further points.

2.4 Abelian orbifolds of C3

It was shown in [42] that since any toric Calabi–Yau threefold
singularity can be obtained from partial resolutions of C3/Z2

k
for sufficiently large k, all toric gauge theories on D3-branes
can be algorithmically obtained by Higgsing the theory ob-
tained from the orbifold projection. It is thus illustrative for
us to present an analysis for these parent orbifold theories.
The toric diagram is an k× k right isosceles triangle of lat-
tice points and the matter content is captured by a periodic
quiver with k2 nodes and the superpotential is comprised of
the closed triangles in the quiver (cf. [43] which obtained the
first results for these N = 1 gauge theories):

to C

A B C

D E F

G H I

to A

to G

to D

to I

to F

to G to H to I

to A to B

(2.50)

The plethystic programme was carried out for these spaces
in [16] and the VMS was found to be complete intersection;
in particular, the Hilbert series and syzygies are presented in
Eqs (4.4-4.5) in cit. ibid.:

g1(t;C3/Z2
k) = f∞(t;C3/Z2

k) =
1− t3k

(1− t3)(1− tk)3 . (2.51)

At k = 1, we are of course back to the case of C3. For
k = 2, we have the cone over a single sextic in WP3

[2:2:2:3]

from the above expression for g1. Writing the cöordinates of
the weighted projective space (in the order of the prescribed
weights) as x,y,z,w, we have the sextic as xyz = w2. Hence,

g1(t;C3/Z2
2) = f∞(t;C3/Z2

2)

= 1−t6

(1−t3)(1−t2)3

=
∞

∑
n=0

(n+ 5
2+

3
2 (−1)n

2

)
tn ,

gν(t;C3/Z2
2) =

∞

∏
m=0

(1−νtm)−(
n+ 5

2 + 3
2 (−1)n

2 )

= 1+ 1−t6

(1−t3)(1−t2)3 ν+

+ 3t6−5t5+4t4−t3+2t2−2t+1
(1−t)6(1+t)4(1+t2)2 ν2

+O(ν3) .

(2.52)

For the weighted projective variety we find that b0,...,4 =
{1,0,0,0,1}. Hence the zeta function is actually quite simple,
because the base space is homologically rather trivial. The
counting for the affine cone thus proceeds as though it were
C3 and we have that

Zp(t;C3/Z2
2) = (1− p3t)−1 , Z(s;C3/Z2

2) = ζ (s−3) .
(2.53)

Indeed, explicitly counting over the first 20 primes on the
computer confirms the p3 solution. We remark that had we
desingularised the origin to xyz−w2 = ε and set ε = 1 to
avoid primes of bad reduction, the solutions are drastically
different:

Npr=1 = {8,12,170,252,1100,2522,5474,6156,

11132,26042,27900,53354,72242, . . .}

As our last remark, the (irreducible top-dimensional com-
ponent of the) master space of this example was studied in
detail in [21] and we recall, from Eq (2.11) therein, that
it is a Calabi–Yau variety of dimension 6, degree 14 and
comprised of the incomplete intersection of 15rics in 12 vari-
ables, with the Hilbert is given by f (t; IrrF ♭

C3/Z2
2
) = (1+6t +

6t2 + t3)(1− t)−6. Reducing over the first primes we obtain
Npr=1 = {136,1377,24625,167041,2250721 . . .}.

The next simplest case is the hypersurface xyz = w3 cor-
responding to k = 3 (which partially resolves to all the toric
del Pezzo cones, to which we shall shortly return). This is an
affine cone over the cubic in P3 and we can rescale weights
to obtain

g1(t;C3/Z2
3) = f∞(t;C3/Z2

3) =
1−t3

(1−t)4

=
∞

∑
n=0

(
3n(n−1)

2 +1
)

tn ,

gν(t;C3/Z2
3) =

∞

∏
m=0

(1−νtm)−
3n(n−1)

2 −1

= 1+ 1−t3

(1−t)4 ν +O(ν3)

+ 4t6+4t5+11t4+7t3+8t2+t+1
(1−t)3(1−t2)3 ν2 .

(2.54)

Now, the cubic surface in P3 is the well-known del Pezzo
surface which is P2 blown up at 6 generic points and whose
Betti numbers are standard: b0,...,4 = {1,0,7,0,1}. This is
confirmed by the toric diagram, which captures a special point
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in the moduli space of this del Pezzo surface (after all, only
up three blow-ups can be accommodated by a toric descrip-
tion). Therefore, the zeta function has the form, following the
argument above for the conifold, mutatis mutandis:

Zp(t;C3/Z2
3) =

1
(1− t)2

1
(1− p2t)

1
P(7)(t)

, (2.55)

where P(7)(t) is a polynomial of degree 7 with integer coef-
ficients and unit constant term. We may then use the values
of Npi for i = 1, . . . ,6 to fix the indeterminate coefficients
in P(7)(t) much like what we did for the conifold, an in-
tense computation into which we shall not presently delve.
Suffice it to say that, trying out the first number of primes
gives us Npr=1 = p3 and the first few values of Npr=2 are
96,1107,22125,156751 . . .

Indeed, as k grows, the degree of the indeterminate factors
too will grow, and whence the number of coefficients to fix.
For now, we shall not occupy ourselves with the higher cases,
though it is certainly interesting to find out what the growth
rates of the coefficients in the zeta function are with respect
to k.

2.5 Del Pezzo cones
The importance of del Pezzo surfaces, in their ubiquitous ap-
pearances in algebraic geometry, representation theory as well
as gauge theory, can hardly be over-stated. In the framework
of D3-brane probes, they provide a marvellously rich class
of stringy background by being the base surfaces over which
cones are affine Calabi–Yau threefolds. The world-volume
gauge theories for the toric members (viz. P2 blown up at
n = 0, . . . ,3 points, as well as P1 ×P1) were first presented
in [42] while the higher ones (n = 4, . . .8) were given in [44].
It is irresistible that we at least mention these gauge theories.

In [15], we found that for the cone over the mth del Pezzo
surface (and hence of degree 9−m), the fundamental generat-
ing function is

f (t;dPm) =
1+(7−m)+ t2

(1− t)3 , m = 0, . . . ,8 . (2.56)

The case of m = 6, i.e., the cubic surface, we have already
probed in our aforementioned study of the Z3 ×Z3 orbifold,
as a special point in the complex structure moduli space, so
here let us move onto another simple example, say, m = 0.
This is simply the total space of the O(−3) anti-canonical
bundle over P2, resolving the Gorenstein singularity C3/Z3.
As an affine embedding, this is given by the non-complete
intersection of 27 quadrics in C10, explicitly presented in Eq
(5.14) of [15].

Because the Betti numbers of the base are bi=0,...,4 =
(1,0,1,0,1) and that we are adding the origin as the tip of the
cone, we have, as before, that Zp(t;dP0) =

1
(1−t)2(1−pt)(1−p2t) ,

being fixed by (1.27) after we projectivise back to P2. There-
fore, the global zeta function is Z(s;dP0)= ζ (s)2ζ (s−1)ζ (s−
2).

As a first non-trivial example, let us consider the next
del Pezzo cone, of m = 1. Here, we have f (t;dP1) = (1−
t)−3(1+6+ t2) and

PE−1[ f (t;dP1)]= 9t−20t2+64t3−280t4+1344t5+O(t6) ,

(2.57)

signifying a non-complete intersection. The gauge theory can
be found in Section 4 of [42], with the adjacency matrix ai j
of the quiver and the superpotential W given by

ai j =

(0 1 1 0
0 0 2 0
0 0 0 3
2 1 0 0

)
,

W =−X4,2X2
2,3X1

3,4 +X1,3X2
4,1X1

3,4 +X4,2X1
2,3X2

3,4−
−X1,3X2

3,4X1
4,1 +X1,2X2

2,3X3
3,4X1

4,1−
−X1,2X1

2,3X3
3,4X2

4,1 ,

(2.58)

where we have used the standard notation that Xk
i, j is the kth

arrow from nodes i to j. The VMS is readily found by the
methods outlined in §1.1.1 and comprises of 20 quadrics in
C9:

V MS(dP1)≃ {y2
3 − y1y4,y2y3 − y1y5,y2y5 − y1y6,y2y4−

−y1y7,y3y5 − y1y7,y4y5 − y3y7,y2
5−

−y1y8,y3y6 − y1y8,y2y7 − y1y8,y4y6−
−y3y8,y5y7 − y3y8,y2

7 − y4y8,y5y6−
−y1y9,y2y8 − y1y9,y2

6 − y2y9,y6y7−
−y3y9,y5y8 − y3y9,y7y8 − y4y9,y6y8−

−y5y9,y2
8 − y7y9} .

(2.59)

One can also check [36] that the Hilbert series for this embed-
ding is as stated.

Now, the base surface is a projective variety in P8 and
has Betti numbers bi=0,...,4 = (1,0,2,0,1), thus the local zeta
function should be

Zp(t;dP1) =
1

(1− t)2(1− p2t)[(1−αt)(1−β t)]
(2.60)

where α and β are constants to be determined. Proceeding
as in (2.44), we in fact find the same number of zeros as
(2.45) and whence the same form of the local and global zeta
functions as the conifold.

2.6 SQCD
Having indulged ourselves with a plethora of examples, many
from the context of D-branes and Calabi–Yau spaces in string
theory, let us, as our final set of illustrations, take a complete
departure and study perhaps the most canonical field theory
of them all, viz., supersymmetric QCD. The geometry of
this was the theme of [14], whose intent was to provide an
algebro-geometric and plethystic aperçu on this old subject.
The explicit VMS as an affine variety was computed and some
first examples, presented in Eq (3.25) therein.

Let us denote the VMS of SQCD with N f flavours and

Nc colours as M(N f ,Nc). Then for N f < Nc, M(N f ,Nc) ≃ CN2
f ,

the flat affine space. For N f ≥ Nc, M(N f ,Nc) has complex
dimension 2NcN f − (N2

c −1) as an affine variety embedded

in CN2
f +2. In the particular case when N f = Nc, M(Nc,Nc) is a

single hypersurface of degree 2Nc. For some first few values,
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the defining equations of the VMS and the associated Hilbert
series are:

M1,1 {−y1 + y2y3} 1
(1−t)2

M2,1 {−y6y8 + y4,−y5y8 + y2,−y6y7 + y3,
1+t4+t2

(1−t)4

−y5y7 + y1}
M2,2 {y2y3 − y1y4 + y5y6} 1+t2

(1−t2)5

M3,3 {y3y5y7 − y2y6y7 − y3y4y8

+y1y6y8 + y2y4y9 − y1y5y9
1+t3

(1−t2)9(1−t3)

+y15y21}
(2.61)

Now, M(1,1) is just the flat space C and needs no further
comment. M(2,1) is a dimension 4, degree 6 affine variety.
Counting the number of points, reducing over the first few
primes, shows that here Npr = (p4)r. Going with this pattern
easily gives us that

Zp(t;M(2,1)) =
1

1− p4t
, Z(s;M(2,1)) = ζ (s−4) , (2.62)

as though we have the counting for C4. M(2,2) is more com-
plicated; this is a degree 2, dimension 5 variety as a cone over
a quadric 4-fold. The Betti numbers are easily determined to
be {b0,...,8}= {1,0,1,0,2,0,1,0,1}, for an Euler number of
6. Therefore, the local zeta function, by (1.27) and adding the
tip of the affine cone, is

Zp(t;M(2,2)) =

1
(1− t)2(1− pt)(1−Bpt + pt2)(1− p3t)(1− p4t)

.
(2.63)

We have indeterminate coefficients Bp which we can fix by
observing some values. As was in the case of the conifold, we
expand the above expression to relate the coefficient Bp with
Npr=1 , the latter of which we can list the first few values:

Npr=1 = 2+ p+ p3 + p4 +Bp

= {36,261,3225,17101,162261,
373321,1424481 . . .}

(2.64)

Hence, the global Hasse–Weil zeta function becomes

Z(s;M(2,2)) = ζ (s)2
ζ (s−1)ζ (s−3)ζ (s−4)L(s;M(2,2)) ,

(2.65)

where the L-function is

L(s;M(2,2)) = ∏
p
(1−Bp p−s + p1−2s)−1 (2.66)

with the first few values of Bp being {8,148,2468,14348,
146276,342548,1336028 . . .}. Developing Z(s;M(2,2)) into
a Dirichlet series gives the first few coefficients as cn =
{1,36,261,841,3225, . . .}.

3. Generationes et Generationes
We have thus performed extensive experimentation, in study-
ing the gauge invariant as well as the arithmetic properties of
a host of supersymmetric field theories. The data presented

are perhaps of interest ipso facto. However, contented with
our catalogue, we could forge ahead with some further cal-
culations. That two enumeration problems, as seen from the
proceeding discussions, should each be governed by a rational
function as a generating function naturally lends itself to an in-
stant speculation. Could the zeta function of the VMS of one
gauge theory, encoding its zeros over finite fields, be related
to the Hilbert series of the VMS of another gauge theory?
This comparative study, relating one generation to another
2, would engender quite a peculiar relationship, wherein the
BPS mesonic spectrum of a gauge theory should correlate to
the arithmetic of another vacuum geometry.

Two immediate hurdles, however, quickly present them-
selves were we to make a naı̈ve identification. First, the (local)
zeta function, which is a rational function according to Weil–
Deligne, is defined with respect to a given prime number p;
the straight-forward analogue of this parameter in the case
of the Hilbert series is unclear. It seems unnatural that the
BPS spectrum should be at all particular to any fixed prime
number. Second, and perhaps more seriously, is the differ-
ence in the growth rate of an, the number of gauge invariant
operators versus that of Npn , the number of zeros over Fpn .
The former, being the Hilbert series of an algebraic variety,
usually tends polynomially in n (and indeed, governed by the
so-called Hilbert polynomial in the degree n). The latter, how-
ever, grows rather much faster, and is in fact exponential in n,
say ∼ pn. This is not only seen in the examples presented in
§1.2, but is, in fact, compelled to be thus by (1.27), so as to
ensure that the generating zeta function can have the exponent
behaving logarithmically, and consequently cancelling the
exponential to give a rational function.

For example, an ∼ n is a perfectly acceptable growth for
a gauge theory. In fact, the mesonic spectrum of the D-brane
theory on the flat-space C2, or equivalently, the Hilbert series
of the bi-variate polynomial ring C[x,y], is simply f∞(t;C2) =
(1− t)−2; whence an = n+1. However, having Npn = n+1
would force the zeta function to be non-rational; signifying
that no algebraic variety over any number field could possibly
have such a behaviour for its zeros.

Parenthetically, we point out that in an interesting paper
[45], the authors find a fascinating relation between the Hilbert
series of a variety and the zeta function of another [46]. There,
the Veronese curve X prescribed by the embedding of P1 by
the very ample line bundle L = OP1(P+ 1) for some P ∈
Z+ is considered. The dimension at degree n is therefore
h0(P1,OP1(P+1)), giving us the Hilbert series:

H(t;X) =
∞

∑
n=0

((P+1)n+1)tn =
1+Pt
(1− t)2 . (3.67)

On the other hand, we recall that the zeta function for A1,
given momentarily in the discussion on that of Pk, is (1−
pt)−1. We thus see that the numerator of the Hilbert series of
the Veronese curve, evaluated at the negative of its argument,
identifies with the denominator of the Weil zeta function of the
affine line, a seemingly different geometry. In this example,
the aforementioned first objection was circumvented by the
choice of the line bundle in embedding P1, whereby inherently

2Hence the title of the section: corpora ipsorum in pace sepulta sunt et
nomen eorum vivet in generationes et generationes. - Ecclesiasticus 44:14.
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introducing a parameter P, which is then associated with some
prime p.

Similarly, one could consider the ν-inserted plethytics
for C1. Here, as was computed in [15], H(t;C1) = (1− t)−1,

giving an = 1, and whence g(ν , t;C1) =
∞

∏
m=0

(1− νtm)−1 =

1+
∞

∑
N=1

gN(t;C1)νN , with gN(t;C1) =
N
∏

n=1
(1− tn)−1. This,

with a simple re-definition, is of the form for the zeta function
for Pk in (1.17).

These above digressions are, of course, merely formal
resemblances. What we wish for is a systematic correspon-
dence; this is certainly encouraged by the similarity between
the definitions of the zeta function and the plethystic expo-
nential, a similarity whose discrepancies, however, are of
sufficient significance that a direct identification is not pro-
nouncedly manifest. Nevertheless we are inspired by Table 1.

The diagram is self-suggestive and let us make a few re-
marks. The geometric object of concern is X , the classical
VMS of a gauge theory. The syzygies s(t), or defining equa-
tions of X , is a polynomial in t when X is complete intersec-
tion, otherwise, it will be some power series. The plethystic
exponential takes s(t) to the Hilbert series f (t), which counts
the single-trace (mesonic) BPS spectrum of the gauge theory
and is a rational function by Hilbert’s theorem on algebraic
varieties. The full (mesonic) spectrum is obtained by a second
plethystic exponentiation, in the spirit of a bosonic oscillator
partition function and recast as a product over the vibration
modes, from f (t). These multi-trace operators constitute the
“global”, or complete, set of objects in the gauge theory, and is
obtainable from two plethystic substitutions from the intrinsic
geometric property s(t) of X .

In a parallel vein, we can consider the arithmetic prop-
erties of X and enumerate the number of solutions Npr over
finite fields. An exponential generating function gives the
zeta function, which is rational by (1.27). This is made global
by a product over primes and gives a Hasse–Weil zeta func-
tion, which can then be expanded into a Dirichlet series. The
plethystics have analytic inverses involving the Möbius func-
tion while the inverse procedure to forming the zeta functions
is quite difficult. Nevertheless, the similarities of proceeding
from intrinsic geometric (or arithmetic) properties of X , via
a rational function, to a global enumerative problem associ-
ated with the gauge theory, through two exponential (infinite
product) substitutions in generating functions, is tantalising
indeed.

3.1 From Hasse–Weil to Hilbert and back

Let us commence again with examples. Since the zeta func-
tion is severely restricted in form, it is perhaps expedient to
start therewith. So our strategy will be to begin with a gauge
theory whose VMS is X , we then compute the arithmetical
properties of X , starting from the bottom left box in the dia-
gram in Table , trace the arrows, via rationality and globality,
to the right and then go upwards, trace the arrows backwards,
via locality and syzygy, to the geometrical properties of a
possibly different VMS Y of another gauge theory.

3.1.1 A single point

Let X be a single point. We recall from (1.14) that here the
local zeta function is (1− t)−1 and the global zeta function
is the Riemann zeta function. The L-series coefficients cn
are thus all unity. We then identify cn with the coefficients
an in the plethystic exponential, and can therefore form the

power series 1+
∞

∑
n=1

1 tn = (1− t)−1, where we have added 1

as the zeroth term for normalisation in order to take care of
the f (0) = 1 term in the plethystic exponent. We have arrived,
of course, at the Hilbert series for C, and subsequently the
mesonic BPS operators of D-branes probing this trivial Calabi–
Yau 1-fold. The gauge theory corresponding to this VMS, as
we recall from §2.1, is a free theory of a single field. Thus, in
our trivial warm-up example, we have gone from a point to C,
which can be thought of as a cone over a point.

3.1.2 Affine space

Next, let us study the family of affine space Ck; this can be
thought of as the VMS of k mutually commuting SU(N) fields
at large N. From (1.19), we recall that Z(s;Ck) = ζ (s− k) =
∑

n=1
ns−k. Therefore the Dirichlet coefficients are c(n) = nk.

Were this the enumerations of a Hilbert series, we would have
that (again normalising with 1 for the n = 0 term):

F(t;Ck) = 1+
∞

∑
n=1

nktn = 1+Li−k(t) , (3.68)

where Li is the standard (de Jonquière’s) Poly-Logarithm func-
tion. Note the nomenclature here: we have used F(t; space)
because the convention in the preceding discussion was that
f (t;X) refers to the Hilbert series of the algebraic variety X
whereas here we are formally constructing a power-series,
the space for which F(t) may be a Hilbert series is yet to be
determined.

Now, for integral parameters k, Li−k(t) are all rational
functions, which is re-assuring as the corresponding Hilbert
series should be so as is required by an algebraic variety.
Specifically, let us recall some of the first few values:

Li0(t) =
t

1− t
,

Li−1(t) =
t

(1− t)2 ,

Li−2(t) =
t(1+ t)
(1− t)3 ,

Li−3(t) =
t
(
1+4t + t2

)
(1− t)4 ,

Li−4(t) =
t
(
1+11t +11t2 + t3

)
(1− t)5 .

Indeed, for k = 0, this gives us f (t)= (1−t)−1, in accord with
the aforementioned case of the single point. Subsequently, we
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Table 1. Relationships between defining quantities, rational functions, and global objects.
Defining Quantities Rational Function Global Objects

Syzygies s(t) (Geometric)

exp
∞

∑
r=1

s(tr )−s(0)
r

−−−−−−−−−−−−−→ Hilbert Series f (t) =
∞

∑
n=0

antn

exp
∞

∑
r=1

f (tr )− f (0)
r =

∞

∏
n=1

(1−tn)−an=
∞

∑
n=0

dntn

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ Full Spectrum

Rational Points Npr (Arithmetic)

exp
∞

∑
r=1

Npr
r tr

−−−−−−−−−−−−−→ Zeta Function Zp(t = p−s)

∏
p

Zp=Z(s)=
∞

∑
n=1

cn
ns

−−−−−−−−−−−−−−−−−−−→ Dirichlet Series

have that:

F(t;pt) =
1

1− t
,

F(t;C) =
1− t + t2

(1− t)2 ,

F(t;C2) =
1−2t +4t2 − t3

(1− t)3 , (3.69)

F(t;C3) =
1−3t +10t2 −3t3 + t4

(1− t)4 ,

F(t;C4) =
1−4t +21t2 + t3 −6t4 − t5

(1− t)5 .

That these functions are in the form of Hilbert series of either
the first or second kind is pleasing.

Note that the numerators for Li are all palindromic; for a
Hilbert series, this would imply that the corresponding al-
gebraic variety be Calabi–Yau by Stanley’s theorem [47]
(cf. [21] for its implication in D-brane gauge theories). How-
ever, we see that the full Hilbert series is palindromic only for
odd k. This can be seen from the following argument. First,
we have the so-called inverse formula [48], that for all s ∈ C,

Lis(z)+(−1)sLis(1/z) =

(2πi)
Γ(s)

×

{
ζ (1− s, 1

2 +
log(−z)

2πi ) , z /∈ (0,1]
ζ (1− s, 1

2 −
log(−1/z)

2πi ) , z /∈ (1,∞)
,

(3.70)

where ζ (a,z) :=
∞

∑
n=0

(a+ n)−s is the standard Hurwitz zeta

function. Because of the pole of the Gamma function at
negative integer values, this implies that

Li−n(z)+(−1)nLi−n(1/z) = 0 , n = 1,2,3, . . . (3.71)

Now, because each of our Polylogarithmic function with nega-
tive integral parameter is a rational function with equal degree
of numerator and denominator, with the latter being trivially
(1− t)k+1, palindromicity of the numerator simply means
that F(t) should equal F(1/t), which is indeed guaranteed by
(3.71) for odd k.

Returning to our list in (3.69), the first case of k = 0 is sim-
ply the point. Next, with the case of k = 1 and hence F(t;C)
we also have some familiarity. Let us take the plethystic
logarithm to yield

PE−1[
1− t + t2

(1− t)2 ] = t + t2 + t3 − t6 . (3.72)

According to the rules prescribed in [15] and some discus-
sions on a similar circumstance in [16], if we were to construe
the above as a projective variety, then the terminating plethys-
tic logarithm, signifying the syzygies, should be interpreted

as follows: we have three generators, in degrees 1,2 and 3
respectively, obeying a single relation in degree 6. That is,
we have a sextic hypersurface in weighted projective space
WP2

[1:2:3]. This, of course, is none other than an elliptic curve.
In light of our present discussion, that we are dealing with

affine spaces and that our gauge theory VMSs are naturally
affine varieties, it is perhaps more expedient of interpret the
Hilbert Series as that of an affine variety. Thus, we think of
the geometry above as that of an affine cone over (i.e., the
dehomogenisation of) the said elliptic curve.

The gauge theory is not immediately reconstructible. In-
deed, were the moduli space simply C2, then we would have,
much in analogy with §2.1, an SU(N) theory with two ad-
joint fields at large N, say Φ1 and Φ2, such that the F-terms
from the superpotential force them to commute and all the
mesonic BPS operators would be in the form Tr(Φn1

1 Φ
n2
2 )

with n1,n2 ∈ Z≥0. However, the Hilbert series would simply
be (1− t)−2, with trivial numerator.

Nevertheless, we see that F(t;C) is written in the form of
a Hilbert series of second kind. Thus, the associated affine
variety is of complex dimension 2 and of degree P(1) = 1
where P(t) = 1− t + t2 is the numerator. This can geometri-
cally be realised as a line in C3. Interestingly, the multi-trace
operators are counted by

PE[
1− t + t2

(1− t)2 ] =
∞

∏
n=1

1
(1− tn)n := Mac(t) , (3.73)

the MacMahon function, which is crucial to the crystal melt-
ing picture of A-type topological strings [49]. It is curious
that so rich a structure can be encoded in the zeta function of
so simple a geometry as the affine complex line.

Moving on to higher k gives more involved results: indeed,
one can check that the plethystic logarithm of F in (3.69) are
non-terminating. This means that the corresponding algebraic
varieties are not obviously complete intersections and there
exist non-trivial higher syzygies ad infinitum. Again, we can
interpret the Hilbert series as being of the second kind since
the numerator and denominator have been cleared maximally.
Hence, k corresponds to a variety of dimension k + 1 and
degree k!, following readily from the asymptotic expansion
of the poly-logarithm, that

Li−k(eµ) =
k!

(−µ)k+1 −
∞

∑
m=0

Bk+m+1µm

m!(k+m+1)
, (3.74)

where B are the Bernoulli numbers and the limit µ → 0 should
be taken.

Let us focus, as inspired by string theory, on cases of
k = 2,3, these being potentially theories on the D3 and M2-
branes [50, 51]. Taking the plethystic logarithm of the k = 2
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case gives

PE−1[F(t;C2)] = t +3t2 +5t3 + t4 −6t5 −17t6−
−4t7 +29t8 +56t9 +7t10 +O(t11) .

(3.75)

Indeed, as much as F(t;C), whose expansion coefficients are
n, needs to be compared to C2, whose coefficients are n+1,
the present example, whose expansion coefficients are n2,
needs to be compared to the conifold (quadric hypersurface
defined in C4), which has coefficients (n+1)2 as was seen in
(2.40). Both latter cases are simple geometries whereas the
former, by a seemingly trivial shift of 1, already becomes quite
involved. Moreover, since the numerator is not palindromic,
the space needs not even be Calabi–Yau. In any event, we
know this to be a 3-dimensional variety of degree 2. Similarly,
for k = 3, we have that

PE−1[F(t;C3)] = t +7t2 +19t3 +9t4 −72t5−
−246t6 −72t7 +1422t8 +O

(
t9) , (3.76)

a non-complete intersection space of dimension 4 and de-
gree 6. Therefore, in each case of k, we could indeed find a
VMS of a rather non-trivial gauge theory whose Hilbert series
coincides with the zeta function of Ck.

3.1.3 Conifold revisited
The astute reader may have asked why, in the above example,
in identifying the Dirichlet coefficients from the Euler product
with plethystic product, we have set cn equal to an, rather than
dn (adhering to the nomenclature of Table 1). The reason, of
course, is that we wish to readily guarantee that we could ar-
rive at an obvious rational function upon taking the plethystic
logarithm. Indeed, as we shall discuss in further detail in §4,
we need to be mindful of the growth rate of these coefficients.
Begotten from a Hilbert series of commutative variety, an are
approximately polynomial growth, and whence, by plethystic
exponentiation, dn grow as a polynomial multiplied by an
exponential.

On the other hand, due to the work of Schnee, Landau
and Ramanujan on the general theories of Dirichlet series
(cf. [52]), cn is usually taken to be of polynomial growth in
order to allow absolute convergence of the Dirichlet series in
the upper half-plane and its subsequent analytic continuation—
crucial, of course, for any statements pertaining to the gen-
eralised Riemann Hypothesis. Therefore, identification of
cn with an is the more natural choice for now, as was seen
above. Indeed, for algebraic schemes more miscellaneous,
the Hilbert series can be arbitrary and whence more general
identifications could be permissible.

Let us illustrate with the example of the conifold on which
we expounded to some length above. We recall the Dirichlet
coefficients cn from (2.49) and redevelop this as a power se-
ries (without troubling ourselves too much with convergence
presently). Setting these to be the an coefficients in a power
series, we can then take the plethystic logarithm, at least order
by order, to find that

f = PE−1[Z(s; C̃ )] = 7t −3t2 −31t3 +209t4−
−744t5 +1431t6 +2194t7 −35726t8+

+186120t9 −573070t10 +O
(
t11) (3.77)

According to the rules, this would describe a non-complete-
intersection manifold, generated by 7 linear forms, obeying 3
quadratic, 31 cubic relations, together with non-terminating
higher syzygies.

3.2 Multiplicativity
Of course, nothing prevents us from going in direction con-
verse to the above. We can compute the Hilbert series for
the geometry of a VMS of a gauge theory whose syzygies
encode the mesonic BPS spectrum and then attempt to find
another gauge theory whose zeta function has the same enu-
meration. In other words, we start from the upper left corner
of Table 1, trace to the right via plethystics, and then proceed
contrariwise to the arrows in the bottom row, via localisation
to primes, and attempt to arrive at the VMS of another gauge
theory. In principle, we can proceed thence, forming another
Hilbert series and another VMS, potentially ad nauseam.

This latter direction of reconstructing the zeta function,
at least computationally, is more difficult than the one re-
constructing the Hilbert series, because whereas plethystic
exponentiation has an analytic inverse in terms of the Möbius
function, finding the factors in an Euler product is not so
immediate.

First, one may ask why the above examples of elliptic
curves and affine spaces worked so nicely. A key is the multi-
plicativity. In order that a Dirichlet expansion be allowable in
being developed into an Euler product, as was hinted in §1.2.1,

its coefficients cn in the series
∞

∑
n=1

cn
ns must be multiplicative;

that is,

cmn = cmcn , (3.78)

whenever m and n are coprime. This can be seen by explicitly
writing out the Euler product. Note that this is a weaker condi-
tion from complete multiplicativity where this relation holds
for all positive integers m and n (cf. [53] for multiplicativity
in the context of enumerating D-brane orbifold theories).

In the case of affine space, the coefficients cn = nk for
some non-negative integer power k, which is certainly com-
pletely multiplicative and whence we were able to expand

∞

∑
n=1

nk

ns =
∞

∑
n=1

1
ns−k = ζ (k−s). Subsequently, this allows for the

Euler product over primes as ∏
n=1

(1− 1
pk−s )

−1, so that each

of the factors is a rational function which can be then be
interpreted as the zeta function of an algebraic variety.

Of course, in order that cn also be conceivable as the di-
mensions of the graded pieces in a commutative ring in accord
with the Hilbert series and in addition to it being multiplica-
tive, cn can only be such a pure monomial power. In other
words, for example, the Dirichlet series of ζ (s)+ ζ (q− s)
for some integer q can be performed without difficulty, even
though the coefficients cn = 1+nq will not be multiplicative,
whereby prohibiting an Euler product with rational factors,
and seems not amenable to an immediate arithmetic perspec-
tive.

This rather severe restriction, that the coefficients be both
polynomial, in accord with Hilbert, and multiplicative, in
accord with Hasse–Weil–Dirichlet, should not discourage us.
After all, for any gauge theory, especially those arising form
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branes at Calabi–Yau singularities, the entropy (asymptotic
growth rate) of the BPS operators is entirely determined by the
leading behaviour of the Hilbert polynomial which governs
the Hilbert series - a point to which we will return in the
section on asymptotics.

3.2.1 The elliptic curve
Nevertheless, examples still abound and let us continue with
the train of thought prescribed above. We have found, in
(3.72), that the zeta function for C, or the affine cone over
a single point, gave rise to a mysterious elliptic curve (the
cone over which is the VMS of a gauge theory with two fields
and constraints). Thus, our starting point is the sextic curve
at the upper left corner, giving us an = n. We computed the
plethystics in (3.73), but now let us compute the zeta function
instead.

The arithmetic of an elliptic curve E is a vast subject.
Luckily, we only require some rudiments. First, from (1.27),
the local zeta function is of simple rational form:

Zp(t;E) =
1−2apt + pt2

(1− pt)(1− t)
, (3.79)

with a single parameter ap depending on the complex structure
of the specific curve and on the prime p. The global zeta
function is therefore

Z(s;E) = ∏
p

Zp(t = p−s;E) = ζ (s)ζ (s−1)L(s;E)−1 .

(3.80)

In forming this product we run into the issue of so-called good
and bad reduction, as well as the concept of the Hasse–Weil
L-Function, formed by a product over primes dividing the
conductor of E. For a more detailed discussion we leave the
reader to Appendix I.

Our elliptic curve is a sextic and using (x,y,z) as the
weighted projective cöordinates of WP2

[1:2:3] in the given or-
der, let us, for now, fix it to be x6+y3+z2 = 0. The L-function
here is simply L(s;E) = ∏

p
(1−2ap p−s + p1−2s)−1. The co-

efficient ap is determined only by p, i.e., knowing the number
of points of E for pr=1 determines the number for all pr. On
equating (3.79) with the definition (1.11) of the local zeta
function gives such a relation (cf. [54]):

Npr = pr +1−α
r − (p/α)r , (3.81)

where α is the root for the numerator: 1 − 2apt + pt2 =
(1−αt)(1− p/α t). In particular, Np1 = p+ 1− 2ap, giv-
ing us, upon explicit enumeration of points, these following
beginning values for −ap:

{0,2,9,8,54,65,135,242,252,405,404,845,819,
1070,1080,1377,1710,1409,1682,2484 . . .}

(3.82)

Subsequently, we form the product over the local zeta function
and apply the Dirichlet expansion, the first terms are:

Z(s;E) = 1+
3
2s +

8
3s +

9
4s +

24
5s +

24
6s +

24
7s +

+
21
8s +

32
9s +

72
10s + . . .

(3.83)

3.3 Modularity
Having recoursed to elliptic curves, one could not possibly
resist the opportunity to digress to modular forms. The cel-
ebrated Taniyama–Shimura–Weil Conjecture, now known
as the Modularity Theorem by the works of Wiles et al., can
be stated in explicit analytic form within our context. Let the
L-series of an elliptic curve over Q, developed into a Dirichlet

expansion L(s) =
∞

∑
n=1

an
ns , be recast into a generating function

ℓ(q = e2πiz) =
∞

∑
n=1

anqn, then this function is in fact a cusp

form of weight 2 and level N, which is the conductor for the
elliptic curve. We shall leave some more details explaining
this correspondence to Appendix II.

Generalising this modularity arising from the global zeta
function for not just the Calabi–Yau one-fold, viz., the elliptic
curve, but to higher dimensions, has been a growing field [3].
In a parallel spirit, that the mirror map, encoding the Gromov–
Witten invariants for certain Calabi–Yau manifolds, especially
non-compact toric Calabi–Yau threefolds exemplified in §2,
(q.v. e.g., [1, 6]), should be a (quasi-) modular form, has also
attained interest.

Indeed, our substitution, in accordance with the schematic
diagram in the beginning of this section, of the L-series co-
efficients into the generating Hilbert series of the variety is
very much in the spirit of this correspondence of Taniyama,
Shimura, et al. and fall under the special situation when the
growth rate of these coefficients be polynomial. In fact, inter-
preting the plethystic exponential as a grand canonical parti-
tion function, one, as to which was earlier alluded, should call
t = ew, ν = eµ the fugacity and w, µ , the chemical potential
associated with the R-charge and number of colours of the
SUSY gauge theory (q.v. [16, 55]). In any saddle point anal-
ysis in extracting asymptotics, for example, as will be done
in the ensuing section, contour integrals are to be performed
with respect to these exponents.

In other words, in light of both modularity and the casting
thereof as a fugacity when considering the theory as statistical-
mechanical, the “dummy variable” t in the Hilbert series of
the vacuum variety of our gauge theory should be substituted
exponentially, and a Fourier q-expansion, be afforded. When
the situation permits, then, the plethystic exponential of the
Hilbert series, therefore becomes a modular form.

Of course, the Modularity Theorem is established only for
elliptic curves and with some evidence compiling for higher
dimension, so in our present context, it is expedient to re-
consider our above example of the sextic elliptic curve in
§3.2.1. To facilitate the usage of [56], let us de-homogenise
x6 +y3 + z2 = 0 and work with the 3 affine patches of the pro-
jective space WP2

[1:2:3]. First, in the patch z = 1, we trivially
have the quadric (defining y′ = y3) parabola x6 + y3 +1 = 0
and the number of zeros over Fp can be tabulated as

Npr=1 = {2,3,5,3,11,9,17,39,23,29,21,45,41,57,47,

53,59,45,39,71 . . .}.
Similarly, in the patch y = 1, we have the cubic (defining
z′ = z2) x6 +1+ z2 = 0, and we have

Npr=1 = {2,4,4,0,12,8,16,36,24,28,24,56,40,60,48,

52,60,32,36,72 . . .}.
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In the patch x = 1, however, we have the standard Weierstraß
representation of the elliptic curve 1+ y3 + z2 = 0 and that

Npr=1 = {2,3,5,3,11,11,17,27,23,29,27,47,41,51,47,

53,59, . . .}.

Now, the conductor of the curve is found to be 144 = 24 ·32,
thus the zeta function can be written as Z(s) = ζ (s)ζ (s−
1) ∏

p∤144
(1−2(Np − p−1)p−s + p1−2s)−1.

Correspondingly, using the Dirichlet coefficients of the
L-function part of the above, and summing over the Fourier
expansion, we find

f (q) = q+4q7 +2q13 −8q19 −5q25 +4q31 −10q37−
−8q43 +9q49 +14q61 +16q67 −10q73 +4q79+

+8q91 +14q97 +O(q100) ;
(3.84)

this is a cusp form of weight 2 and level 144, belonging to a
vector space of dimension 59. Were these to be interpreted as
not Fourier coefficients but, rather, power series coefficients
encoding the non-terminating syzygies, we would be tempted
to perform the plethystic exponentiation, formally with the
variable t, and arrive at

g(t) = 1+ t + t2 + t3 + t4 + t5 + t6 +5t7 +5t8 +5t9 +5t10+

+5t11 +5t12 +7t13 +17t14 +17t15 +17t16+

+17t17 +17t18 +9t19 +17t20 +O(t21) ;
(3.85)

As we saw in the case of the conifold, choice of complex
structure of course sensitively affects the zeros. Experiment-
ing with some values, we find that z2 = y3 +16 has the partic-
ularly small conductor of 27 = 33, whereupon the associated
L-series, and by Taniyama–Shimura–Wiles, the q-series of
the associated cusp form, of weight 2 and level 27, is

f (q) = q−2q4 −q7 +5q13 +4q16 −7q19 −5q25+

+2q28 −4q31 +11q37 +8q43 −6q49 −10q52−
−q61 −8q64 +5q67 −7q73 +14q76 +17q79−

−5q91 −19q97 +O(q100) .

(3.86)

Luckily, the space of cusp forms of Γ0(27) at weight 2 is of
dimension 1 and so is spanned by a single function [57], thus
we can actually write down the analytic form for f (q), in
terms of the Dedekind Eta function (the reciprocal of which,
of course, without the prefactor, gives the standard partition
of integers):

f (q)=η(q3)2
η(q9)2 , with η(q) := q

1
24

∞

∏
n=1

(1−qn) . (3.87)

4. Asymptotæ Infinitorum
To the growth rate of the various coefficients relevant in our
analyses we have alluded a number of times in our proceeding
discussions, on account of summability, rationality as well as

multiplicativity. In this section, we embark on the examination
of the asymptotics of the series central to our exposition.

The partition of integers is encoded by the Eta function, or
in our language, by the Hilbert series for C and the plethystics
for the single-field free theory. The asymptotic behaviour,
i.e., the growth rate of the number of partitions for large
integers, was determined by the celebrated result of Hardy and
Ramanujan. The generalisation of this problem for weighted
partitions was solved by Meinardus [58] and states that for
the expansion

g(t) :=
∞

∑
n=0

dntn = PE[ f (t)] =
∞

∏
n=1

(1− tn)−an ,

with f (t) =
∞

∑
n=0

antn ,

(4.88)

the asymptotic behaviour of dn is:

dn ∼C1nC2 exp
[

n
α

α+1 (1+
1
α
)(AΓ(α +1)ζ (α +1))

1
α+1

]
×

×(1+O(n−C3)) .

(4.89)

The constants, or critical exponents, in the above expression
are determined as follows. If the Dirichlet series for the
coefficients an of f , viz., D(s) :=

∞

∑
n=1

an
ns with Re(s)> α > 0,

converges and is analytically continuable into the strip −C0 <
Re(s) ≤ α for some real constant 0 < C0 < 1 and such that
in this strip, D(s) has only 1 simple pole at s = α ∈ R+ with
residue A. The constants in (4.89) are, explicitly,

C1 =

eD′(0) 1√
2π(α +1)

(AΓ(α +1)ζ (α +1))
1−2D(0)
2(α+1) ,

(4.90)

C2 =
D(0)−1− α

2
α +1

, (4.91)

and C3 some positive constant with which we here need not
contend.

Indeed, as mentioned in (3.78), the expansion coefficients
an of the Hilbert series grows polynomially and so asymptot-
ically is governed by the leading term, which is essentially
an ∼ Knd where d +1 is the dimension of the VMS and K is
a constant coarsely depending on the geometry. For example,
for affine space, K = 1, and for orbifolds thereof, K is some
fraction depending on the order of the group. We are thus led
back to a situation very much akin to our example in §3.1.2. In
this case, we have that D(s) = Kζ (s−d), α = d +1, A = K,
and

dn ∼
eKζ ′(−d)√
2π(d +2)

((d +1)!ζ (d +2))
1−2Kζ (−d)

2(d+2) ×

×n
2Kζ (−d)−d−3)

2(d+2) exp
[

Kn
d+1
d+2

d +2
d +1

((d +1)!ζ (d +2))
1

d+2

]
.

(4.92)

Though standard to the Plethystic Programme, the above re-
sults can now be re-examined under our new light. Indeed,
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(4.89) dictates that the asymptotica of the total spectrum of
(mesonic) BPS operators of a gauge theory is governed by the
analytic characteristics - viz., the placement of the pole and
the residue thereon - of the Dirichlet series constructed from
the coefficients of the Hilbert series of its VMS. However, this
is precisely the duality substitution outlined in Table and on
which we dwelled in §3.

Carrying on with this train of thought, we should ascribe
a geometry to D(s); this, of course, is one for which the
global zeta function is Z(s) = Kζ (s − d). The local zeta
function is thus Zp(t) = K(1− pdt)−1, which, normalising
the logK constant term, gives Cd . Therefore, recalling the
origin of our coefficients an, asymptotically then, we have that
this d-dimensional gauge theory arising from arithmetic is
dual “holographically” to the d +1 dimensional gauge theory
emerging from geometry.

Having entered the vast realm of analytic and asymptotic
properties of zeta functions, one could hardly contain oneself,
as a parting speculation, from remarking on the rôle of its
zeros and poles. The celebrated zeros of the Riemann zeta
function aside, it being the analytic continuation of the Hasse–
Weil zeta function for a single point, more contiguous to
our present theme is perhaps the Conjecture of Birch and
Swinnerton-Dyer (cf. [54]). It states that for an elliptic curve
(and possibly generalising to higher Abelian varieties) of
rank3 r, the L-function tends as L(s;E)∼ c(s−1)r for some
constant c and near s = 1. Thus, if the L-function vanishes at
1, then there is an infinite number of rational points.

Now, we have argued above that the asymptotic growth
rate of the BPS spectrum of a gauge theory is controlled by
the pole and residue of the Dirichlet series arising from a
“holographic” dual, or equivalently, by the order of the zero
of the reciprocal of the Dirichlet series. The reciprocal of
the Hasse–Weil zeta function clearly inverts each local zeta
factor. This, as was pointed out in [2], is an interesting ac-
tion: it exchanges even and odd cohomology according to
the Weil Conjectures. For Calabi–Yau spaces, or any gen-
eralisation thereof, this is actually mirror symmetry. Eq
(10.6) in ibid. proposes a “quantum zeta function” Zp(t;M )Q

for a Calabi–Yau manifold M whose mirror is W such that
the numerator of Zp(t;M )Q is that of the numerator of the
ordinary Zp(t;M ) and the denominator is the numerator of
Zp(t;W ). Therefore, since the delocalisation to the global
zeta function is via a product, the zero of the Hasse–Weil zeta
function of one manifold is the pole of that of its mirror.

Now, the order of the zero at 1, at least for Abelian va-
rieties, determines the rank of its group of rational points
by (generalisations of) Birch-Swinnerton-Dyer. This then,
should in turn be ascertained by the order of the pole at 1
for the mirror variety. However, by our correspondences in
the preceding discussions in §3, the pole of the Dirichlet se-
ries representation of the global zeta function determines the
asymptotic growth, in the manner of a critical exponent, of a
gauge theory whose VMS possesses a Hilbert series which
can be identified formally with the coefficients in the Dirichlet

3According to Mordell-Weil, the points E(Q) of an elliptic curve E over
Q form a group which decomposes as E(Q)≃ E(Q)tor ⊕Zr where E(Q)tor
is the torsion part, constituted by some finite group and r, called the rank,
governs the number of copies of Z. Hence r > 1 means that there are, in
particular, infinite rational points on E.

expansion. In this fashion, the asymptotics of one gauge the-
ory, whose VMS is M , via the pole structure of the plethystic
exponential of the fundamental generating function of its BPS
spectrum, would control the zeroes of the zeta function of
another theory whose VMS is the mirror W of M , and thence,
the rank of the rational points on W . It is of course interesting
to pursue this line of thought, however, for now, let us content
ourselves with leaving this to future work.

5. Prospectus

We have embarked on a somewhat length journey through the
expansive landscape of supersymmetric gauge theories, tread-
ing along a selected path which is guided by two principles,
the first geometric, hinging upon the established Plethystic
Programme for the counting of the BPS spectrum of the op-
erators, and the second arithmetic, founded on the zeros of
the vacuum moduli space over number fields of finite char-
acteristic. Drawing from the observations over a plenitude
of examples, we have attempted to regard the two parallel
enumerative problems under the same light, as outlined by the
diagram in Table . Both proceed from an intrinsic property,
exponentiated to arrive at a fundamental rational generating
function, and then exponentiated again in order to be delo-
calised to an infinite product: the former, originates from the
syzygies and ends with a canonical partition function and the
latter, begins with the zeroes over finite fields and arrives at
an Euler product over primes.

By explicitly constructing pairs of gauge theories, where
the vacuum of one governs the other by having their gener-
ating functions exchanged, we have observed an interesting
duality wherein the geometry of one and the arithmetic of
another inter-mingle. Asymptotic analyses on the growth
rates of the coefficients in the generating functions, by con-
struction constituting the enumerations, suggest a curiously
“holographic” nature of this duality, which holds for arbitrary
gauge theories, as coursely controlled asymptotically by the
dimension of the vacuum moduli space. In due course, we
have been inevitably led to the study of L-functions, Dirichlet
series, analytic behaviour of the zeroes and poles of Hasse–
Weil zeta functions, as well as the Modularity Theorem, all
of which tremendous subjects in themselves; we pray that
the patient reader has as much forgiven our inexpertise as he
or she has indulged in our long exposition, especially in the
drudgery of our examples and experimentation.

It is hoped that we have only skimmed over the surface of
a deeper subject. To mention but a few prospects in this brief
epilogue, we should, for instance, explore the full quantum
moduli space, which in the geometry often materialises as
deformations in complex structure. We have seen how such de-
formations could drastically alter, if not the chiral ring, at least
the arithmetic. Moreover, the vacuum moduli space of gauge
theories, especially in the context of D-brane world-volume
physics, should be comprehended scheme-theoretically, with
the classical Abelian case being the centre of some non-
commutative algebra. We have placed rational restrictions
on the Hilbert series and the local zeta functions because of
commutative algebraic geometry, however, the realm of non-
commutativity would significantly relax such constraints and
would, naturally, lead to further correspondences. For now,
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let us repose awhile from our excursions onto this territory of
physics, geometry and number theory, and regain our strength
by further reflections, before voyaging further on such fertile
ground.
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Appendices
I Primes of good and bad reduction
In performing the product over all the prime in obtaining the global zeta function from the local, we encounter situations of
primes of bad-reduction where the variety may become singular. We illustrate this, in a pedagogical manner, using an explicit
example explained lucidly by [54] whose excellent presentation we will attempt to follow here.

Take the elliptic curve {y2 = x3 −n2x} ⊂ C[x,y], with n some integer parameter, and denote it as En. Indeed, the curve,
together with its Jacobian, prescribe the simultaneous system: {y2 − x3 +n2x = 0,2y = 0,3x2 −n2 = 0}. Working over a field
of characteristic pr , this has non-trivial solutions if p|2n (for p = 2, (±1,0) and for p|n, (0,0)), whereby making the point
corresponding to the solution singular and the elliptic curve, degenerate. Such a prime p is called one of bad reduction. Over
these primes, there are always Npr = pr +1 points. For instance, when p|n, the curve degenerates to a complex line y2 = x3,
over which, we recall, there are pr +1 points over Fpr . Over the remaining primes, of good reduction, the Weil conjectures
give us the rational form in (3.79). Note that the bad reduction primes is always a finite set, determined as those divisible by
some parameter. Here 2n is this governing parameter and gives rise to the so-called conductor for the given elliptic curve. In
general, the conductor N is a single integer whose prime factors are precisely those of bad reduction. In summary,

Zp(t;En) =

{
1−2apt+pt2

(1−pt)(1−t) p ∤ 2n ,
1

(1−pt)(1−t) p | 2n ,
(5.93)

so that the global zeta function, upon substituting t = p−s, should be

Z(s;En) = ∏
p∤2n

1−2apt + pt2

(1− pt)(1− t) ∏
p| 2n

1
(1− pt)(1− t)

=
ζ (s)ζ (s−1)

L(s;En)
, (5.94)

where L(s;En) := ∏
p∤2n

(1−2ap p−s + p1−2s)−1 is dubbed the Hasse–Weil L-Function. The relation between the parameter 2ap

and the number of points over pr=1 is as in (3.81):

2ap(En) = p+1−Np . (5.95)

II Modularity and Hasse–Weil
The particular case of Taniyama–Shimura, now called the Modularity Theorem by the work of Wiles et al. special case of the
Langlands Programme, which has of late become important in string theory due to Witten – upon which we here briefly touch is
the Hasse–Weil Conjecture for elliptic curves. Of course, all these impinge on an enormous subject, for which we have neither
the qualifications nor the space to expound in any depth. We shall concentrate on the analytics of the Dirichlet expansion

L(s;E) =
∞

∑
n=1

an
ns for the L-function of a given elliptic curve E. To set notation, by a modular of weight k and level N we mean

an analytic function f (z) defined on the complex upper-half plane {z ∈ C : Im(z) > 0} such that f
( az+b

cz+d

)
= (cz+ d)k f (z)

under Γ0(N), a particular congruence subgroup of the modular group SL2(Z) where c divides N. Furthermore, a cusp form is

one for which the zeroth coefficient a0 of its q-expansion f (z) =
∞

∑
n=1

anqn (where q := e2πiz) vanishes.

Now, the En in Appendix I have rather complicated conductors, so let us use a simpler example. Consider the elliptic curve
y2 + xy+ y = x3 − x2 − x, one could find [56] that the conductor is 11. We can tabulate, for some first primes, some leading
values of Np (which we can readily find on the computer) and the coefficient ap in the local zeta function, related thereto by a
relation in analogy to (5.95): ap = p−Np:

p 2 3 5 7 11 13 17 19 23 29 31 37 41 43 47
Np 3 3 7 3 11 15 16 23 19 23 27 39 47 39 47
ap −1 0 −2 4 0 −2 1 −4 4 6 4 −2 −6 4 0

(5.96)

Forming the L-function and expanding into Dirichlet series gives:

L(s) = ∏
p̸=11

(1−ap p−s + p1−2s)−1 =
∞

∑
n=1

cn

ns ;

cn = {1,−1,0,−1,−2,0,4,3,−3,2,0,0,−2,−4 . . .} (5.97)

On the other hand, the space of modular forms at each weight is a finitely generated vector space. In particular, cusp forms of

weight 2 and level 17 is generated by a single function, given as a plethystic type product, with η(q) := q
1
24

∞

∏
n=1

(1−qn) the

standard Dedekind eta-function:
η(q)η(q4)2η(q34)5

η(q2)η(q17)η(q68)2 − η(q2)5η(q17)η(q68)2

η(q)η(q4)2η(q34)
=

∞

∑
n=1

anqn ;

an = {1,−1,0,−1,−2,0,4,3,−3,2,0,0,−2,−4 . . .} . (5.98)

10.56725/instemm.v1iS1.9 20/21

https://doi.org/10.56725/instemm.v1iS1.9


On Fields over Fields

As one can see, the coincidence of the two sets of expansion coefficients is highly non-trivial and constitutes one of the
highlights of twentieth century mathematics.
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