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Eigenvalue Density, Li’s Positivity, and the Critical
Strip
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Abstract
We rewrite the zero-counting formula within the critical strip of the Riemann zeta function as a cumulative
density distribution; this subsequently allows us to formally derive an integral expression for the Li coefficients
associated with the Riemann ξ -function which, in particular, indicate that their positivity criterion is obeyed,
whereby entailing the criticality of the non-trivial zeros. We conjecture the validity of this and related expressions
without the need for the Riemann Hypothesis and also offer a physical interpretation of the result and discuss
the Hilbert–Pólya approach.
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Introduction
The zeros of the Riemann zeta function have been extensively
studied in mathematics. Trivial zeros of ζ (s) occur at the
negative even integers. In 1859, Riemann [1] conjectured that
all non-trivial zeros have a real part 1

2 . See [2, 3] for nice
reviews.

The idea to apply physics to the Riemann zeros is an old
one. Hilbert and Pólya [4,5] independently proposed that non-
trivial zeros of the Riemann zeta function could correspond to
eigenvalues of a self-adjoint (Hermitian) operator. Subsequent
research is suggestive of this spectral interpretation of the
zeros of the zeta function. The Selberg trace formula [6, 7]
encapsulates the duality between the lengths of geodesics on
a Riemann surface and the spectrum of the Laplacian on the
surface. For the Laplacian acting on the space of PSL(2,Z)
invariant real analytic functions on the upper half plane the

eigenvalue distribution is related to the Selberg zeta function
Z (s) in the same way that Weil’s explicit formula [8–11]
from analytic number theory is related to the Riemann zeta
function.

Subsequently, Montgomery [12] observed that the pair
correlation function of zeros of the zeta function along the
critical line follows the distribution X(u)∼ 1−

( sinπu
πu

)2
. This

gives the density of spacings of not necessarily consecutive
zeros. Dyson realised that the density X(u) specifies the pair
correlation function of the eigenvalues of a large random
Hermitian matrix with a Gaussian measure. The statistics of
the zeros of the zeta function therefore follow the Gaussian
unitary ensemble, a fact verified spectacularly through the
numerical studies of Odlyzko [13, 14].

Over the years the spectral interpretation has been ex-
plored by various researchers in an effort to bring quantum
physics and statistical physics to bear upon this difficult math-
ematical problem. A large list of references is included in [15].
More recently the connection between physics and the Rie-
mann zeros has been explored in the works of Berry and Keat-
ing [16,17] and its subsequent elaborations by Connes [18,19]
and by Sierra and Townsend [20–23] regarding the physical
interpretation of the formula for the number of non-trivial
zeros in a given interval.

The aforementioned formula can be written explicitly
in terms of the Riemann ξ -function, which was also used
by Li [24, 25] to establish an equivalent formulation of the
Riemann Hypothesis. The present article attempts to establish
a connection between the physics of the exact formula for the
number of non-trivial zeros N(T ) up to a given height in the
critical strip and Li’s positivity criterion. Our arguments rely
on the property of N(T ) as a cumulative density function. The
intuition and our discussion find their wellspring in theoretical
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physics.
The note is organised as follows. First, we review Li’s Criterion, with an emphasis on requisite properties of the Riemann

ξ -function. In the central section of the paper, we show how using N(T ) and its derivative as eigenvalue distributions in the
critical strip would imply the positivity of Li’s coefficients. Finally, we interpret the result from a physicist’s perspective.

Nomenclature
Throughout this paper, we will adhere to the following notation.

ξ (z) The Riemann ξ -function, ξ (s) := 1
2 s(s−1)π− s

2 Γ(s/2)ζ (s).
S The critical strip, S := {z | 0 < Re(z)< 1}.
S+ The upper critical strip, S+ := {z | 0 < Re(z)< 1, Im(z)> 0}.
L The critical line, L := {z | Re(z) = 1

2}.
L+ The upper critical line, L := {z | Re(z) = 1

2 , Im(z)> 0}.
N(T ) The number of zeros of ζ (z) or ξ (z) inside S+ up to height Im(z)< T .
ρ j,k = σ j,k + iµ j A zero of ζ (z) or ξ (z) in S+ indexed by j,k ∈ Z>0; µ j+1 > µ j, σ j,k+1 ≥ σ j,k.

1. Li’s Positivity Criterion
Let us, perhaps more for the sake of notation, first remind the reader of the statement of the Riemann Hypothesis [1, 26–28]:

The analytic continuation, from z ∈R>1 to the whole complex plane z ∈C of ζ (z) :=
∞

∑
n=1

n−z has all its non-trivial

zeros in the critical strip S := {z | 0 < Re(z)< 1} lying on the critical line L := {z | Re(z) = 1
2}.

Now, ζ (z) obeys a remarkable functional equation ζ (z) = 2zπz−1 sin( 1
2 πz)Γ(1− z)ζ (1− z), which inspired Riemann to define

the ξ -function, which will be central to our discussions:

ξ (z) :=
1
2

z(z−1)π− z
2 Γ(

z
2
)ζ (z) . (1.1)

There are many advantages to considering ξ (z) instead of ζ (z), which we now summarise.

1.1 The Riemann ξ -function
First, note that ζ (z) has trivial zeros at all negative even integers, which are conveniently cancelled by the corresponding
simple poles of the Γ-function. Hence, ξ (z) has only non-trivial zeros, all located within the critical strip, and affords an
elegant Weierstraß product expansion, known as the Hadamard product:

ξ (z) = ξ (0) ∏
ρ∈S

(1− z
ρ
) , (1.2)

where ξ (0) = 1
2 , and ρ are the non-trivial zeros of ζ (z) in S since none of the other factors in the definition of ξ (z) vanishes

therein. It is an obvious but important fact that S extends to both the upper and the lower half-planes and that all the ρ occur in
conjugate pairs above and below the real line. We shall denote S+ as the critical strip above the real line and correspondingly
L+ as the upper critical line.

Second, the functional equation becomes particularly simple:

ξ (z) = ξ (1− z) . (1.3)

Indeed, the symmetry about the critical line of Re(z) = 1
2 becomes manifest. Hence, not only are the zeros symmetric about the

real axis, they are also symmetric about the critical line. The Riemann Hypothesis postulates that all the zeros in fact lie on L .
Third, consider the conformal mapping z 7→ z

z−1 , which maps L+ to the boundary circle |z|= 1 of the unit disk and the
entirety of the left half of S+, i.e., {z | 0 < Re(z)< 1

2}, to the interior of the open unit disk. Consider, therefore, the function

φ(z) := ξ (
z

z−1
) = ξ (

1
1− z

) , (1.4)

where we have used (1.3) in the second equality. Since all zeros are symmetric around the critical line, to consider the zeros of
ξ within S therefore amounts to considering the zeros of φ(z) within the open unit disk. Indeed, the Riemann Hypothesis
would require that there be no such zeros and indeed that all the critical zeros are on the boundary circle. Since the number of
zeros of an analytic function f (z) in a region R is equal to

∫
∂R dz f ′(z)

f (z) , we have that

PROPOSITION 1 The Riemann Hypothesis is equivalent to φ ′(z)
φ(z) being analytic (i.e., holomorphic and without poles) within

the open unit disk |z|< 1.
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Fourth, a beautiful exact result relates the number of zeros up to height T within S , and the ξ -function:

N(T ) := #{ρ ∈ S ,0 < Im(ρ)< T | ξ (ρ) = 0}= 1
π

Imlogξ (
1
2
+ iT ) . (1.5)

Briefly, this can be seen [26] as follows. We have that, since there are no poles in the critical strip, N(T ) = 1
2πi
∫

∂R ds ξ ′(s)
ξ (s) =

1
2π

Im
∫

∂R ds (logξ (s))′, where R is the rectangular region in the critical strip up to height T , strictly, R = {z | − ε ≤ Re(z)≤
1+ ε, 0 ≤ Im(z) ≤ T}. (Note that no zero passes through the line Im(z) = T .) By the symmetry of (1.3), we have that
N(T ) = 2 1

2π
Im
∫

C ds (logξ (s))′, where C is the right half segment of ∂R from 1
2 to 1

2 + iT , and whence (1.5) since logξ (s) is
real at 1

2 .
Extensive work has been done in estimating (1.5). We have, using the definition (1.1) for the first equality, that

N(T ) =
1
π

ϑ(T )+1+
1
π

Imlogζ (
1
2
+ iT )∼ T

2π
log

T
2π

− T
2π

− 7
8
+O(logT ) , (1.6)

where historically ϑ(T ) = ImlogΓ( i
2 T + 1

4 )−
T
2 logπ is known as the average part and 1

π
Imlogζ ( 1

2 + iT )∼ O(logT ) is the
fluctuating part around the essentially T logT growth of the former. This is the inspiration behind classical (the average) and
quantum mechanical (the fluctuation) interpretations of the critical zeros [4, 5, 16, 17].

We note that N(T ) is a real step function1, increasing by unity each time a new critical zero is encountered:

N(T ) = ∑
ρ∈S+

θ(T − Imρ) =
∞

∑
j=1

α j θ(T −µ j) . (1.7)

It is vital to explain the above in detail. We can explicitly write the upper critical zeros as ρ j,k = σ j,k + iµ j, indexed by
j,k ∈ Z>0, where σ j,k ∈ (0,1) and µ j ∈ R>0. The zeros are ordered so that µ j+1 > µ j. Crucially, as we do not assume the
Riemann Hypothesis, the real part of ρ need not be 1

2 . Furthermore, we do not assume simplicity of the zeros, which is as yet
also unknown [29]. If, for example, we have a double root, we explicitly count this twice. By the functional identity, zeros
of the ξ -function not on the critical line are paired within the upper critical strip: if σ + iµ is a zero, then so is (1−σ)+ iµ .
The index k = 1, . . . ,α j enumerates the zeros with the same imaginary part. We order the zeros so that σ j,k+1 ≥ σ j,k. The α j
then counts the number of zeros with imaginary part µ j including the multiplicities of the roots. If, for example, there are a
pair of simple roots with imaginary part µ j, then in an epsilon interval around µ j, the counting function N(T ) jumps by two.
Contrariwise, if ρ ∈ L+ is the only simple root with imaginary part µ j, then N(T ) jumps by one. We know that the number
of roots with imaginary part in the interval (0,T ) is finite. Indeed, the asymptotics of the expression are given in (1.6). In
summary, N(T ) is a strictly increasing step function as we move up in height T regardless of the Riemann Hypothesis.

The first few numerical values for µ j=1,2,3,4,... are approximately 14.134725142, 21.022039639, 25.010857580,
30.424876126, . . .. It is known that the first 1013 zeros lie on the critical line [30]. The Riemann Hypothesis is, of course, the
statement that σ j,k =

1
2 for all zeros.

The rewriting of N(T ) lends itself to a wonderful interpretation: N(T ) is a cumulative density function defined over the
critical strip. In other words, its derivative, ρ̃(T ) := N′(T ) is a density function of distributions. That is, one could conceive
of a physical system whose energy levels (eigenvalues of the Hamiltonian) are thus distributed; this is along the school of
thought of Hilbert–Pólya [4, 5]. Of course, the resulting eigenvalue density is highly non-smooth, but is, rather, a sum of
delta-functions:

ρ̃(T ) := N′(T ) =
∞

∑
j=1

α j δ (T −µ j) . (1.8)

1.2 Li’s criterion
Another striking property of the ξ -function was noted by Li [24] not too long ago. Let {kn}, for positive integers n, be defined
by

kn :=
1

(n−1)!
dn

dzn

[
zn−1 logξ (z)

]
z=1 ; (1.9)

then we have that

THEOREM 1.1 [Li’s Criterion] The Riemann Hypothesis is equivalent to the condition that kn ≥ 0 for all n ∈ Z>0.

Li also showed two equivalent ways of writing these numbers, namely

φ ′(z)
φ(z)

=
∞

∑
n=0

kn+1zn ; (1.10)

kn = ∑
ρ∈S

[
1−
(

1− 1
ρ

)n]
, (1.11)

1We use the standard notation that the step function is defined as θ(x−a) =
{

1, x ≥ a
0, x < a . Its derivative is the delta-function δ (x−a) = θ ′(x−a).

Importantly, the integral of δ (x−a) over any finite interval containing a on the real axis is normalised to equal to unity.
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where we recall that

φ(z) := ξ (
1

1− z
) := 1+

∞

∑
j=1

a jz j . (1.12)

Therefore, (1.10) means that kn are simply the Taylor expansion coefficients of (logξ ( 1
1−z ))

′. We stress that in order for this
Taylor expansion to make sense, the radius of convergence must be such that there are no poles within the enclosed disk (within
the unit disk) thus defined. That is, we cannot allow a zero to occur for the denominator. Let a zero be ρ := σ + i µ , then the
first z0 value for which 1

1−z0
= ρ will restrict the radius of convergence. Whence |z0|= |(σ−1)+iµ|

|σ+iµ| . In [24], to be safe, a worst

bound is assumed, where σ is taken to be 1 and |z0|= 1
4 .

On the other hand, (1.11) is also important [24, 25]; note that the sum is real because all critical zeros ρ occur in conjugate

pairs. Furthermore, note that the modulus
∣∣∣1− 1

ρ

∣∣∣ can neither exceed nor be exceeded by unity since the summand 1−
(

1− 1
ρ

)n

in the former case grows polynomially in n and the sum diverges, while it tends to 1 in the latter case and the sum also diverges.

Indeed, if the Riemann Hypothesis held, then for the j-th pair of conjugate critical zeros
∣∣∣1− 1

ρ

∣∣∣ = ∣∣∣∣1− 1
1
2±iµ j

∣∣∣∣, which is

exactly equal to 1 and the sum in (1.11) converges. Moreover, the unimodularity allows us to set 1− 1
1
2±iµ j

:= exp(±iθ j),

whence we would have

kn =
∞

∑
j=1

(1− exp(inθ j))+(1− exp(−inθ j)) = 2
∞

∑
j=1

(1− cos(nθ j))≥ 0 . (1.13)

Now, for the converse. Li explicitly calculated the coefficients a j in (1.12) to be

a j = 4
j

∑
p=1

(
j−1
j− p

)
1
p!

∫
∞

p
dx [x3/2

ψ
′(x)]′

(
1
2

logx
)p

[1+(−1)px−1/2] ∈ R>0 , (1.14)

where ψ(x) :=
∞

∑
n=1

e−πn2x. Using (1.10) and (1.12), one has the recursion relation that

kn = nan −
n−1

∑
j=1

k j an− j . (1.15)

If all kn ≥ 0, then the above recursion would imply that kn ≤ nan for all n ∈ Z>0, whence for z in the unit disk,∣∣∣∣φ ′(z)
φ(z)

∣∣∣∣≤ ∞

∑
n=1

∣∣knzn−1∣∣≤ ∞

∑
n=1

nan |z|n−1 = φ
′(|z|)< ∞ . (1.16)

That is, φ ′(z)
φ(z) is analytic in the open unit disk and by Proposition 1, Riemann Hypothesis holds. Thus, the necessary and

sufficiency together implies Theorem 1.1.
Explicitly, one can Taylor expand to find the Li coefficients. The first few are:

k1 =
1
2

(
2+ γ + log

1
4π

)
,

k2 = 1+ γ − γ
2 +

π2

8
+ log

1
4π

−2γ1 , (1.17)

k3 = 1−3γ
2 + γ

3 +
3π2

8
+

3
2

log
1

4π
− 1

16
ψ2(1)−6γ1 + γ

(
3
2
+3γ1

)
+

3
2

γ2 −ζ (3) ,

where γ is the Euler–Mascheroni constant, γ j are the Stieltjes constants2, and ψn(z) = dn+1

dzn+1 logΓ(z) is the polygamma function.
Indeed, we present some of the first numerical values of these coefficients in Table 1.

2We recall the definition of the Stieltjes constants. Consider the series expansion of ζ (z) about z = 1:

ζ (z) =
1

z−1
+

∞

∑
n=0

(−1)n

n!
γn (z−1)n ,

γn = lim
m→∞

[
m

∑
k=1

(logk)n

k
− (logm)n+1

n+1

]
.

The γn are then the Stieltjes constants. We can as well define

γn =
dn

dzn ζ (z)− (−1)n n!
(z−1)n+1

∣∣∣∣
z=1

.

In particular, γ0 = γ , the Euler–Mascheroni constant.
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2. Density Function for the Distribution of Critical Zeros
Thus armed with all necessary ingredients, let us proceed to rewrite the Li coefficients in a suggestive form. We will do so
formally in two ways and point out the subtleties involved at the end of the manipulations.

2.1 A logarithmic expansion
First, integrating (1.10) and using the definition as well as the functional equation (1.4), we have that, for z in the unit disk,

logξ (
z

z−1
) = logξ (

1
1− z

) =
∞

∑
n=1

kn

∫
dz zn−1 =− log2+

∞

∑
n=1

kn

n
zn , (2.18)

where − log2 is easily checked to be the constant of integration.
We note, however, that the above expansion has radius of convergence strictly less than unity, whereby excluding the unit

circle, to which, crucially, L is mapped under our conformal transformation z 7→ z
z−1 . Therefore, it is imperative to analytically

continue. Let us start with (2.18) and rewrite the expansion about the point z =−1. Note that the region of convergence for
this is an open of circle of radius two centred about z =−1, which, in particular, encloses the entirety of the closed unit disk,
except the point z = 1, where there is a pole for φ(z) = ξ ( 1

1−z ).
Therefore, we have that

logξ (
1

1− z
) = log

1
2
+

∞

∑
n=1

kn

n
zn = b0 +

∞

∑
n=1

bn(z+1)n , (2.19)

where we have written the two expansions together for comparison. Indeed, as with the Li coefficients, all bn are clearly real.
Note that

b0 := log
−Γ( 1

4 )ζ (
1
2 )

8π
1
4

, b1 :=
1
8

(
− logπ +ψ0(

1
4
)+2[logζ (

1
2
)]′
)
= 0 , (2.20)

as well as the curious identity b2 = b3.
Expanding (z+1)n, we readily obtain an expression for the Li coefficients in terms of the new expansion coefficients bn:

kn = n
∞

∑
j=n

(
j
n

)
b j . (2.21)

We now wish to solve for the kn explicitly and demonstrate positivity.
We first see, using the counting formula (1.5) and the expansion (2.19), that

N(µ) =
1
π

Imlogξ (
1
2
+ iµ) =

∞

∑
n=1

bn

π
Im
(

2µ + i
2µ − i

+1
)n

, (2.22)

where we have used the substitution 1
2 + iµ = 1

1−z , or z = 2µ+i
2µ−i . Then, since

Im
(

2µ + i
2µ − i

+1
)n

=
(4µ)n

(4µ2 +1)
n
2

sin(n tan−1 1
2µ

) = 2n cosn
θ sin(nθ) , cosθ :=

2µ√
4µ2 +1

, (2.23)

we have that

πN(µ) =
∞

∑
n=1

bn2n cosn
θ sin(nθ) . (2.24)

Next, we apply the integral identity3

∫ π
2

0
dθ cosn

θ sin(nθ)sin(2mθ) =
π

2n+2

(
n
m

)
, m,n ∈ Z>0 . (2.25)

Therefore, multiplying both sides of (2.24) by sin(2mθ) dθ and integrating, we find that∫ π
2

0
dθ πN(µ) sin(2mθ) =

∞

∑
n=1

bn

(
n
m

)
π

4
. (2.26)

Whence,
∞

∑
n=1

bn

(
n
m

)
= 4

∫ π
2

0
dθ N(µ) Um−1(cos(2θ)) sin(2θ) , (2.27)

3We can show this using the elementary identity that 2n cosn θ sin(nθ) =
n
∑

p=0

(n
p

)
sin(2pθ), as well as the orthogonality condition that∫ 0

π
2

dθ sin(2pθ)sin(2mθ) = − 1
4 πδpm, p,m ∈ Z. To our knowledge, (2.25) first appeared in D. Bierens de Hahn’s Nouvelles tables d’intégrales définies,

Leiden: P. Engels (1867), published one year after Riemann’s death.
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where we have used the definition of the Chebyshev polynomial of the second kind, that

Um−1(cosφ) :=
sin(mφ)

sinφ
. (2.28)

Finally, using that cos(2θ) = cos2 θ − sin2
θ = 4µ2−1

4µ2+1 , that sin(2θ) dθ =−2cosθ d(cosθ), and that as µ proceeds from 0 to
∞, θ subtends an angle from π

2 to 0, we find:

∞

∑
n=1

bn

(
n
m

)
= 8

∫
∞

0
dµ N(µ) Um−1(

4µ2 −1
4µ2 +1

)
2µ√

4µ2 +1

2

(4µ2 +1)
3
2
. (2.29)

However, recognising the left hand side from (2.21), we arrive at the conclusion4 that for all m ∈ Z>0:

km = 32m
∫

∞

0
dµ

µ

(4µ2 +1)2 N(µ) Um−1(
4µ2 −1
4µ2 +1

) . (2.30)

This is beautiful and remarkable integral expression for the Li coefficients. We numerically evaluate some of the first of
these numbers and find them to be indeed close to the required values of Li. This is reassuring, and the results are presented in
Table 1.

Let us now proceed to simplify the integral (2.30). First, recall that Chebyshev polynomials of the second kind are related
to the Chebyshev polynomials of the first kind by the equation∫

dx Un(x) =
1

n+1
Tn+1(x) . (2.31)

Next, integration by parts
∫ b

a dµ f (µ)g′(µ) = [ f (µ)g(µ)]ba −
∫ b

a dµ f ′(µ)g(µ) suggestively compels us to define

f (µ) := N(µ) ; g′(µ) :=
32mµ

(4µ2 +1)2 Um−1(
4µ2 −1
4µ2 +1

) =⇒ g(µ) = 2(Tm(
4µ2 −1
4µ2 +1

)−1) . (2.32)

Note that we have added −2 as the integration constant for g(µ) for reasons shortly to be clarified.
The integral thus becomes5

km =

[
2N(µ)(Tm(

4µ2 −1
4µ2 +1

)−1)
]∞

0
−2

∫
∞

0
dµ ρ̃(µ)(Tm(

4µ2 −1
4µ2 +1

)−1) , (2.33)

where, importantly, we have used (1.8) for the explicit form of ρ̃(µ) and the defining property of the delta-function. Next, note
that N(0) = 0 since the first critical zero does not occur until µ > 14, and that for any fixed m,

lim
µ→∞

N(µ)(Tm(
4µ2 −1
4µ2 +1

)−1)∼ m2(
−2

4µ2 +1
) µ log µ = 0 . (2.34)

4Curiously, if we did not worry about the region of convergence and proceeded formally with (2.18), we can obtain the same result. Indeed, we can rewrite
the function (1.5) as, for µ ∈ R≥0,

N(µ) =
1
π

Imlogξ (
1
2
+ iµ) =

∞

∑
n=1

kn

πn
Im
(

2µ + i
2µ − i

)n

,

where we have set 1
2 + iµ = 1

1−z , or z = 2µ+i
2µ−i for the expansion and where we have used the fact that kn are all real. Clearly, 2µ+i

2µ−i is unimodular and resides
on the unit circle. Using (2.28), we can simplify the expansion parameter:

Im
(

2µ + i
2µ − i

)n

= Ime
i tan−1( 4µ

4µ2−1
)n
= sin

(
tan−1(

4µ

4µ2 −1
)n
)
=

4µ

4µ2 +1
Un−1(

4µ2 −1
4µ2 +1

) .

Next, we recall that the Chebyshev polynomials prescribe an orthonormal basis over [−1,1]:∫ 1

−1
dx Un(x)Um(x)

√
1− x2 =

π

2
δmn ,

which, when transformed to x := 4µ2−1
4µ2+1 , becomes∫

∞

0
dµ Un(

4µ2 −1
4µ2 +1

)Um(
4µ2 −1
4µ2 +1

)
4µ

4µ2 +1
16µ

(4µ2 +1)2 =
π

2
δmn .

Therefore, this allows for the inversion of the formula for N(µ) above by integration of both sides, and we arrive once more at (2.30).
5One could also perform the integral without recourse to delta-functions and generalised analysis. The expression (2.30) becomes, by (1.7),

km = 32m
∞

∑
j=1

α j

∫
∞

0
dµ θ(µ −µ j)

µ

(4µ2 +1)2 Um−1(
4µ2 −1
4µ2 +1

) = 2m
∞

∑
j=1

α j

∫
∞

µ j

dµ
16µ

(4µ2 +1)2 Um−1(
4µ2 −1
4µ2 +1

)

= 2m
∞

∑
j=1

α j

[
1
m

Tm(y)
]1

4µ2
j −1

4µ2
j +1

= 2
∞

∑
j=1

α j (1−Tm(
4µ2

j −1

4µ2
j +1

)) .
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Thus, the boundary terms vanish, and we have that

km = 2
∞

∑
j=1

α j (1−Tm(
4µ2

j −1

4µ2
j +1

)) , m ∈ Z>0 . (2.35)

Recalling the definition of the Chebyshev polynomial of the first kind, that Tm(cosθ) := cos(mθ) and remembering that all

α j, regardless of actual value, are strictly positive integers, each summand in (2.35) is non-negative. In fact, because
4µ2

j −1

4µ2
j +1

< 1

strictly for any imaginary part as we know the first µ j is at least 14,

Tm(
4µ2

j −1

4µ2
j +1

)< 1 for any given m ∈ Z>0 and for all j ∈ Z>0 , (2.36)

so each summand is actually strictly positive. In conclusion, this would imply that all Li’s coefficients km > 0. Indeed, we
have numerically evaluated the first few km coefficients given in (2.35), using the first 104 critical zeros, and see that they are
very close to the results obtained from (1.10) and (2.30), and moreover constitute an increasing sequence of strictly positive
numbers. In particular, the above discussions would force all critical zeros to lie entirely on L . In this case, treating any
multiple roots distinctly, we see that (2.35) reduces precisely to (1.13), which saturates the lower bound.

We seem to have arrived the positivity of the Li’s coefficients without the assumption of the Riemann Hypothesis! This, of
course, is not quite true: the criticality of the zeros of the ξ -function has in fact implicitly been invoked.6 Let us re-examine
the expansion (2.18). If a zero of ξ were ever encountered, a branch cut must be carefully chosen because of the logarithm.
Now, in setting 1

2 + iµ = 1
1−z in (2.22), we have used the fact that µ is real, whereby making z on the boundary of the unit disk

to which the critical line is mapped. That is, z = 2µ+i
2µ−i is always unimodular for real µ . Therefore, only when no zeros at all lie

in the interior of the unit disk, to which the region inside S but not on L is mapped, do we not need to carefully find the
branch. This, then, would require the Riemann Hypothesis. Nevertheless, we have formally arrived the integral formula (2.30)
which does not seem to depend on the precise location of the zeros and the subsequent choice of branch cut. We will discuss
possible implications of this later.

Table 1. The Li coefficients evaluated numerically. Here, “by expansion” means the Taylor expansion in (1.10), “by
integral” means the integral identity in (2.30), with cut-off 108 for the upper bound, and “by sum” means the
summation over Chebyshev polynomials in (2.35), with cut-off as the first 104 critical zeros. We have also
juxtaposed the percentage errors with respect to the expansion values for comparative purposes.

n kn by expansion kn by integral Difference kn by sum Difference
1 0.0230957 0.0235290 −1.876% 0.0229610 0.5832%
2 0.0923457 0.0940796 −1.878% 0.0918069 0.5835%
3 0.207639 0.211543 −1.880% 0.206427 0.5838%
4 0.368790 0.375740 −1.884% 0.366635 0.5844%
5 0.575543 0.586417 −1.889% 0.572175 0.5851%
6 0.827566 0.843252 −1.895% 0.822717 0.5860%
7 1.12446 1.14585 −1.903% 1.11786 0.5870%
8 1.46576 1.49376 −1.911% 1.45713 0.5881%
9 1.85092 1.88645 −1.920% 1.84001 0.5895%
10 2.27934 2.32332 −1.930% 2.26587 0.5910%
11 2.75036 2.80373 −1.940% 2.73406 0.5926%
12 3.26326 3.32695 −1.952% 3.24386 0.5944%
13 3.81724 3.89222 −1.964% 3.79448 0.5964%
14 4.41148 4.49869 −1.977% 4.38508 0.5985%
15 5.04508 5.14550 −1.990% 5.01477 0.6007%
16 5.71711 5.83170 −2.004% 5.68263 0.6032%
17 6.42658 6.55632 −2.019% 6.38765 0.6057%
18 7.17248 7.31832 −2.033% 7.12884 0.6085%
19 7.95374 8.11664 −2.048% 7.90512 0.6114%
20 8.76928 8.95012 −2.062% 8.71540 0.6144%

6We are grateful to R. Heath-Brown and H. Bui for pointing this out to us.
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2.2 A delta-function expansion
Can we evade the problem of logarithmic branch cuts? Let us return to the original definition of the Li’s coefficients from
(1.10):

φ ′(z)
φ(z)

=
1

(1− z)2

ξ ′( 1
1−z )

ξ ( 1
1−z )

=
∞

∑
n=0

kn+1zn =
∞

∑
n=0

(n+1)bn+1(z+1)n . (2.37)

Thus defined, the relation between the k and b coefficients in (2.21) still holds.
Now, let us, with the aid of some non-standard analysis, reinvestigate the counting function N(µ) = 1

π
Imlogξ ( 1

2 + i µ) =

∑
j

α j θ(µ −µ j), where µ j is the imaginary part of the j-th zero in S+, regardless of the Riemann Hypothesis, and α j counts

potential multiplicities. Upon taking the derivative, this gives us a sum over delta-functions, or,

∞

∑
j=1

α j δ (µ −µ j) =
1
π

Re

[
ξ ′( 1

2 + i µ)

ξ ( 1
2 + i µ)

]
, (2.38)

where we have exchanged the derivative with the Im.
Again, using the conformal transformation 1

2 + iµ = 1
1−z , or z = 2µ+i

2µ−i , we have

Re

[
ξ ′( 1

2 + i µ)

ξ ( 1
2 + i µ)

]
=

∞

∑
n=0

(n+1)bn+1 Re[(1− 2µ + i
2µ − i

)2(
2µ + i
2µ − i

+1)n] . (2.39)

Now, we must substitute the following relation:

Re[(1− 2µ + i
2µ − i

)2(
2µ + i
2µ − i

+1)n] = Re[
4

4µ2 +1
e

i tan−1 4µ

4µ2−1
(4µ)n

(4µ2 +1)
n
2

ein tan−1 1
2µ ]

= (2n cosn
θ)(4 sin2

θ)cos(nθ +ψ) (2.40)
= 2n+2 cosn

θ sin2
θ cos((n+2)θ −π) ,

where we have used, upon defining the angles,

tanθ =
1

2µ
, tanψ =

4µ

4µ2 −1
=⇒ 2θ = ψ +π . (2.41)

Simplifying cos((n+2)θ −π) =−cos((n+2)θ), we find that

∞

∑
j=1

α j δ (µ −µ j) =− 1
π

∞

∑
n=0

(n+1) bn+1 2n+2 cosn
θ sin2

θ cos((n+2)θ) . (2.42)

For each positive integer m, we shall hit both sides of (2.42) with 4sin2(mθ(µ)) dµ and integrate the variable µ on the
half-line [0,∞). Recall that 2sin2(mθ) = (1− cos(2mθ)). Thus, the left hand side becomes∫

∞

0
dµ

∞

∑
j=1

α j δ (µ −µ j) 2(1− cos(2mθ(µ))) = 2
∞

∑
j=1

α j (1−Tm(cos(2θ(µ j)))

= 2
∞

∑
j=1

α j (1−Tm(
4µ2

j −1

4µ2
j +1

)) , (2.43)

where we have used the defining relation of the Chebyshev polynomial of the first kind.
Now, we do the same on the right hand side. From (2.41), µ ∈ [0,∞) implies that θ ∈ [π

2 ,0). It is easy to check that
dµ =− 1

2sin2 θ
dθ . We as well note the definite integral identities

∫ π
2

0
dθ cosn

θ cos((n+2)θ) = 0 , n ∈ Z≥0 , (2.44)∫ π
2

0
dθ cosn

θ cos((n+2)θ) cos(2mθ) =

{
π

2n+2

( n
m−1

)
, n > m−2 ,

0 , n ≤ m−2 .
(2.45)

Putting these pieces together, we find

− 1
π

∞

∑
n=0

(n+1) bn+1 2n+2
∫ π

2

0
dθ cosn

θ cos((n+2)θ) (1− cos(2mθ))

=
∞

∑
n=m−1

bn+1 (n+1)
(

n
m−1

)
= m

∞

∑
n=m

bm

(
n
m

)
= km . (2.46)
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Hence, we recover (2.35):

km = 2
∞

∑
j=1

α j (1−Tm(
4µ2

j −1

4µ2
j +1

)) , m ∈ Z>0 . (2.47)

Again, we seem to have arrived at an expression which implies Li’s positivity without assuming Riemann Hypothesis.
However, re-examining (2.37) reveals a subtlety. The radius of convergence is, as pointed out in [24], for |z|< 1

4 . However,
we have equated z = 2µ+i

2µ−i in (2.39), because µ is real, and |z| = 1, whereby again making the expansion and subsequent
derivations only formal. Of course, one could argue that the delta-function involved is a generalised function and should be
neither confined to nor validated by convergence, since it is, after all, itself a divergent quantity. Nevertheless, one needs to
rigorously define and manipulate the divergences carefully.

2.3 Remarks
Here we wish to collect some comments regarding our main formulas for the Li coefficients:

kn = 32n
∫

∞

0
dµ

µ

(4µ2 +1)2 N(µ) Un−1(
4µ2 −1
4µ2 +1

) = 2
∞

∑
j=1

α j (1−Tn(
4µ2

j −1

4µ2
j +1

)) . (2.48)

These formulas have been derived by formal manipulations of divergent series and then have been checked numerically. The
crucial question is whether they are true in a rigorous mathematical sense. In particular, there might exist a contour deformation
that takes the integral formula to the convergent region and leaves it unchanged. We leave that question as open, and list these
formulas as hypothetical assertions to be proven rigorously. Li also shows that the Riemann Hypothesis for the Dedekind zeta
function ζK(s) is as well equivalent to the non-negativity of a sequence of real numbers [24]. We therefore conjecture that
similar formulas to the expressions for kn apply for the coefficients κn in the series expansion of (logξK(

1
1−z ))

′.
Another question is whether these formulas assume the Riemann Hypothesis in some subtle way. The derivations we have

presented indeed suffer from this affliction, but it may be that an alternate derivation of this expression sidesteps the issue.
We will offer a few further comments on this score. The crucial observation is that both the counting function N(µ) and the
argument of the Chebyshev polynomials that appear in the integral formula for the Li coefficients know directly about factor of
1
2 only from the functional equation for the Riemann ξ -function. One might also question whether the unimodularity of the
trigonometric representation of the Chebyshev polynomials is the signal of a secret assumption of the Riemann Hypothesis, but
once again we note that this unimodularity relies on the argument 1

2 + iµ of the counting function N(µ) determined by the
functional equation for the ξ -function. This tempts us to think that the final integral and summation formulas for kn only know
about the functional equation for the Riemann function ξ . But this remains to be rigorously proven.

Finally, we wish to offer a couple of comments about the possible geometric and topological meaning of the integral and
the summation formulas for kn. Here we wish to compare the integral and the summation formulas for the Li coefficients to
the remarkably deep structures uncovered in the profound proofs of the Riemann Hypothesis for the case of finite fields by
Weil, Deligne and others [31–34]. (An insightful summary of Weil’s work is presented in the recent book [19], especially in
chapter 4.) The work of Li is also related to the seminal work of Weil by Bombieri and Lagarias [25]. We wish to note that
the integral and summation formulas for kn discussed in this paper capture, at least heuristically, some of the crucial aspects
discussed in these papers and books.

In particular, the equality of the integral and the summation formula for the Li coefficients reminds one of Weil’s explicit
formula [8–11]. This explicit formula has an interpretation in terms of an index theorem with deep meaning in algebraic
geometry. The integral formula for the Li coefficients could be understood as an index formula of the Atiyah–Singer type,
which might have a profound topological interpretation in the case of the distribution of the Riemann zeros as discussed
in Connes and Marcolli [19]. For example, the counting function appearing in the integral formula for kn might be seen
to correspond to some generalised Todd genus and the Chebyshev polynomial to some generalised Chern character. The
summation formula for the Li coefficients on the other hand can be recast as an alternative sum, which is very similar to the
Lefschetz fixed point formula which figures prominently in Weil’s seminal work and in more recent topological discussions of
the Riemann Hypothesis, as once again reviewed in [18, 19]. Finally, even the argument of the Chebyshev polynomials that
appears in the integral and the summation formulas for kn is suggestive of the existence of some non-trivial vector bundle

structure over the space of integers, where the factor
4µ2

j −1

4µ2
j +1

reminds one of the value of the Higgs field vortex configuration

which determines the self-dual connection on that vector bundle. (See the Section 7.6 of Chapter 4 of Connes and Marcolli [19]
for comparison.) The summation formula then appears as the formula for the action of the compact (topological) Abelian
Higgs theory, as prominently discussed in the case of compact quantum electrodynamics, as prominently discussed in the case
of compact quantum electrodynamics [35].

We intend to return to these fascinating structures in future work.
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3. Physical Perspectives
As we have noted in the Introduction, attempts to use a physical argument to explain the Riemann Hypothesis date back to
Hilbert and Pólya [4, 5]. Were one to find a matrix

H =
1
2
· I+ i ·T , (3.49)

whose eigenvalues are all the zeros of ξ (z) and if in addition the matrix T were Hermitian, then all the zeros would lie on the
critical line L . Therefore, one would wish to find the appropriate operator H and its corresponding eigenfunctions, or, in
physical terms, the Hamiltonian and its wave functions.

Berry and Keating [16, 17] pioneered a method to interpret N(T ) as a density of states. However, they focused primarily
on the “average part” of N(T ), viz., the part that exhibits T logT growth. We seek to use Li’s Criterion in concert with our
approach to further this interpretation. The full expression N(T ) = 1

π
Imlogξ ( 1

2 + iT ) inspires us to regard the ξ -function as a
wave function,

ξ (z) = r(z)e
iπ
h̄ S(z) , (3.50)

where S(z) is the standard quantum mechanical phase and r(z) is the modulus. Subsequently S(z) = h̄
π

Imlogξ (z) indeed
becomes N(T ) for z = 1

2 + iT . In the Hamilton–Jacobi formalism of classical mechanics and its standard quantisation, S(z) in
(3.50) is simply the classical action. We know that N(T ) is an integer. Therefore, the action S must be quantised, i.e., S = h̄n
for n ∈ Z, and S is therefore integral in units of h̄. This requirement is, of course, the Bohr–Sommerfeld quantisation condition.

Furthermore, using (2.22) and (2.31), as well as (2.35), we have that, for the classical action (i.e., dropping the factor of h̄),

S(z) =
1
π

∞

∑
n=0

kndyn , yn := Tn(
4z2 −1
4z2 +1

) , kn = 2
∞

∑
j=1

α j

(
1−Tn(

4µ2
j −1

4µ2
j +1

)

)
. (3.51)

This way of writing an action is well known from Hamilton–Jacobi’s action-angle theory. It means we have a classical system
of an infinite but countable set of particles indexed by n, whose generalised coordinates are yn and conjugate momenta are
kn, with an energy z. Therefore, we propose that the Li coefficients should be regarded as generalised momenta and are the
action variables. These must be positive in order to have a stable classical system. If they were negative, the system would be
unstable. If they were complex, the system would be metastable. Hence, the Li Criterion implies that our dynamical system is
classically stable.

What can one say about the quantum mechanical picture? Let us investigate the secular equation of the operator in (3.49).
It should by construction have roots corresponding to the zeros of ξ (z), that is,

ξ (z) = det(z · I−H) . (3.52)

To arrive at the appropriate matrix description, we start by considering the expansion (2.18), which, combined with (2.35),
gives

logξ (
1

1− s
) =− log2+

∞

∑
n=1

∞

∑
j=1

2α j

n

[
1−Tn(

4µ2
j −1

4µ2
j +1

)

]
sn . (3.53)

Put cosθ j :=
4µ2

j −1

4µ2
j +1

. Using the definition of the Chebyshev polynomial and reversing the sums, we obtain

logξ (
1

1− s
) = − log2+

∞

∑
j=1

2α j

∞

∑
n=1

(
1
n
− 1

n
cos(nθ j)

)
sn (3.54)

= − log2+
∞

∑
j=1

α j

[
−2log(1− s)+ log(1− s eiθ j)+ log(1− s e−iθ j)

]
.

Substituting z = 1
1−s and using that e±iθ j = 1− ( 1

2 ± iµ j)
−1, we find

ξ (z) =
1
2

∞

∏
j=1

(
(z− ( 1

2 + iµ j))(z− ( 1
2 − iµ j))

( 1
2 + iµ j)(

1
2 − iµ j)

)α j

, (3.55)

which is simply a refined version of the Hadamard product, a reassuring check.7 Note that each factor in the product obeys the
functional identity.

7The product formula (3.55) can also be obtained by using the integral formula (2.30) derived in section 3. Thus,

logξ (
1

1− s
) =− log2+32

∞

∑
n=1

∫
∞

0
dµ

µ

(4µ2 +1)2 N(µ) Un−1(
4µ2 −1
4µ2 +1

) sn .

We exchange the order of the integral and the sum and repeat the steps from the previous computation to obtain (3.55).
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Equation (3.55) is to be compared with (3.52). We see that there exists a matrix such that its eigenvalues coincide with
µ j, which is consistent with the Hilbert–Pólya picture. As the expression vanishes for zeros on the critical line, the refined
Hadamard product is already in the form of the determinant of an infinite matrix, and the eigenvalues of T are real. Note the
appearance of the 1

2 prefactor in (3.55). In a quantum mechanical system, it would be tempting to interpret this as the vacuum
energy term, but we will give a different interpretation in what follows.

Knowing the energy levels (eigenvalues) of the Hamiltonian H does not allow us to pin down what the latter actually is; the
previous discussion simply shows that it must exist. We do know, however, that the partition function is

Z(β ) = tr
(

e−βH
)
=

∞

∑
j=1

e−β µ j , (3.56)

for the inverse temperature β . This object would define the statistical mechanics of Riemann zeros.
What can we say about the actual Hamiltonian? Our discussion here is necessarily heuristic. The physical interpretation

of the Li formula suggests a system in which the momenta (p) and coordinates (q) are linearly related. In the simplest case,
this would, assuming factorisation, correspond to the Hamiltonian for an inverted harmonic oscillator H = 1

2 (p2 −q2), which,
for example, features prominently in the non-perturbative definition of the two-dimensional critical string theory in terms of
Matrix models. Upon a further canonical transformation such a Hamiltonian would amount to H = QP.

Berry and Keating [16, 17], Connes [18], and Sierra and Townsend [20–23] among others, have looked at precisely such a
Hermitian quantum mechanical Hamiltonian. For convenience, let us work in units where h̄ = 1. We have

H =
1
2
(QP+PQ) , P :=−i

d
dQ

. (3.57)

The Q eigenfunctions of this scaling operator in the Q,P phase space are:

H ψE(q) = E ψE(q) , ψE(q) =
A

q
1
2−iE

(3.58)

with some appropriate normalisation constant A. The momentum state wave function is the Fourier transform:

ΨE(p) =
∫

∞

−∞

dq e−ip·q
ψE(q) =

A

|p| 1
2+iE

2iE Γ( 1
4 +

1
2 iE)

Γ( 1
4 −

1
2 iE)

. (3.59)

A few further comments are in order.

• First note that the 1
2 appears from the symmetrisation 1

2 (QP+PQ) in the Hamiltonian. It is the same 1
2 that appears

in formula (1.5) for the number of zeros in the upper critical strip with imaginary part less than T and in (3.55). We
see that this factor is different from the vacuum energy, even though it does conspire with the canonical commutation
relations (the reason for the vacuum energy) to produce the 1

2 + iE combination.

• Classically QP is the simplest Hamiltonian that yields the generator of the Mellin transform, i.e., a power, or scaling
function, and 1

2 − iE appears as the scaling dimension. That is to say, the 1
2 (QP+PQ) Hamiltonian is selected as the

required quantum scaling operator with eigenfunctions given by generators of the Mellin transform.

• The importance of the Mellin transform is indicated in the deep study of Bombieri and Lagarias [25] regarding Li’s
positivity condition. In particular Bombieri and Lagarias show that Li’s Criterion is simply the consequence of the
famous Weil Criterion [8–11], which explicitly relies on properties of the inverse Mellin transform, namely the fact
that the convolution of the inverse Mellin transform of a function and its complement (that is to say, its “dual” under
the s 7→ 1− s map) is equal to the sum of the inverse Mellin transforms. The QP Hamiltonian (even classically) enjoys
this feature, provided that we identify in the formula for the Li coefficients Qn = einθ j and Pn = e−inθ j . The Hermitian
1
2 (QP+PQ) Hamiltonian is the quantum counterpart of the classical scaling Hamiltonian, which leads to the power law
eigenfunctions that generate the Mellin transform.

We observe that there is a beautiful identity, valid for all Re(z) > 0, and in particular, within the critical strip, that
ζ (z)Γ(z)(1−21−z) =

∫
∞

0 dx xz−1

ex+1 . Together with the duplication formula for the Γ-function,
√

πΓ(z) = 2z−1Γ( z
2 )Γ(

z
2 +

1
2 ),

one can write

ξ (z) = f (z)
∫

∞

0
dx

xz−1

ex +1
= f (z)

∞

∑
n=0

(−1)n
∫

∞

0
dx enxxz−1 , f (z) :=

z(z−1)

π
1−z

2 (2z −2)Γ( z+1
2 )

. (3.60)

This tells us that the ξ -function, up to a factor which does not vanish in the critical strip, is the Mellin transform of a
Fermi–Dirac distribution. Note that, in the second equality we have trivially inserted the infinite geometric sum of (−1)nenx in
order to compare with (3.59).
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Thus, even though the momentum space wave functions of the 1
2 (QP+PQ) scaling Hamiltonian contain the Γ-function, we

can, upon a sequence of rescaling transformations of the Hamiltonian, QP 7→ n QP, obtain a formula involving the ξ -function.
The fact that this infinite alternate sum of transformed Hamiltonians is proportional to the ξ -function could be viewed as a
confirmation of what is expected from (3.52) and (3.55). The characteristic polynomial may then be regarded as a WKB-like
wave function of the appropriate Hermitian operator.

In other words, by comparing (3.60) to (3.59), we would like to interpret the left hand side as a particular limit of the
characteristic polynomial det(z ·I−H). In this expression, the Hamiltonian is H = 1

2 (QP+PQ), with power-like wave functions
ψE(q) = A q−1/2+iE , exact real eigenvalues E, and scaling dimensions 1

2 − iE. This particular limit of the characteristic
polynomial of H is given as the rescaling QP 7→ n QP, for an integer n, where we introduce the alternate summation over n.
The claim we make is that in this particular limit the characteristic polynomial of H = 1

2 (QP+PQ) has zeros at the critical
zeros of ξ (z). This would be consistent with what we have written in (3.52).

Connes [18] has examined the action of the operator eiq·p, which can be viewed as the generator of classical symplectic
transformations, albeit on an abstract non-commutative space. In some sense, by mapping QP 7→ n QP and resumming

alternately, we have “fermionised” the generator of the classical symplectic transformations. Note also that
∞

∑
n=0

(−1)ne−nx can

be viewed as a twisted partition function. As such it can be understood in terms of determinants, as familiar from the physics
reinterpretation of index formulas. It is noteworthy that the alternate sums of traces feature prominently in Connes’s work as
well. It would be interesting to understand this relation more precisely.

This peculiar limit of the characteristic polynomial of a Hermitian operator can be understood in direct analogy with what
happens in the semiclassical WKB h̄ → 0 limit of a simple harmonic oscillator. In this case, the exact wave functions (the
Hermite polynomials) reduce to the Airy function, which can be understood as a WKB limit of the characteristic polynomial of
the Hamiltonian for the simple harmonic oscillator. The equidistant spectrum of the harmonic oscillator gets rearranged to give
the zeros of the Airy function in the h̄ → 0 limit. Note that the zeros of the Airy function have to stay collinear given their
origin in the WKB limit of a Hermitian operator. Similarly the continuum spectrum of the Hermitian 1

2 (QP+PQ) Hamiltonian
gets rearranged into the collinear spectrum of the zeta function in the limit described in the preceding paragraph and in (3.60),
which is different in detail, but similar in spirit to the canonical WKB limit.

Finally, we note that the continuous scaling dimension associated with the power law function that generates the Mellin
transform should be preserved in this limit. This could be responsible for the chaotic dynamical properties of critical Riemann
zeros, as observed in manifold numerical studies. The Fermi–Dirac distribution in (3.60) might be the evidence for the repulsive
(“fermionic”) nature of the Riemann zeros, which would fit the matrix model description of their correlation properties.
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unter einer gegebenen Größe,” Monatsberichte der
Königlichen Preußischen Akademie der Wissenschaften
zu Berlin. Aus dem Jahre 1859, vol. 50, no. 3, pp. 671–
680, 1860.

[2] E. Bombieri, “Problems of the millen-
nium: The Riemann hypothesis.” Available at
http://www.claymath.org/millennium/, 2000.

[3] J. Conrey, “The Riemann hypothesis,” Notices of the
American Mathematical Society, vol. 50, no. 3, pp. 341–
353, 2003.

[4] D. Hilbert Unpublished work, c. 1914.
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